Department of Chemistry
 
 
Hintergrundbild
Hintergrundbild
Uni von A-Z
  Flagge  Deutsch
Universität Bielefeld > Department of Chemistry
  

Research profile of the Faculty of Chemistry

  1. Molecule-based Materials
    Aziz-Lange, Ghadwal, Glaser, Godt, Hellweg, Hoge, Kohse-Höinghaus, Kühnle, Mitzel
  2. Life Science Chemistry
    Dierks, Fischer v. Mollard, Gröger, Hellweg, Kottke, Lübke, Niemann, Sewald
  3. Gas Phase- und Atmospheric Chemistry
    Brockhinke, Eisfeld, Kohse-Höinghaus, Koop, Manthe, Mitzel
  4. Public Understanding of Science
    Dunker, Kohse-Höinghaus, Lück, Mitzel

Important subjects in the research area Molecule-based Materials are molecular magnets, biomimetic catalysts, cytostatic compounds, fluorinated compounds, organometallic compounds, silanes, spin probes an models for EPR-spectroscopy, microgels and microemulsions.

Protein crystallography is used and sulfatases, lysosomal hydrolases and membrane transport are studied in the research area Life Science Chemistry. An additional focus are bioorganic and biocatalytic topics in organic chemistry groups, which are also investigated by biochemistry groups within the Faculty of Chemistry.

Research topics in Gas Phase- und Atmospheric Chemistry are combustion, atmospheric aerosols and ice nucleation. The core facility „gas-electron diffraction and structure analysis of small molecules“ (GED@BI, N. Mitzel) is funded by the DFG and is unique within the EU.

The research area Public Understanding of Science focuses on research concerning instructions in chemistry during early childhood.

The Faculty of Chemistry is characterized by interdisciplinary research, which is typical for Bielefeld University. Researchers in the research area Molecule-based Materials cooperate with the department of Physics.

The research area Life Science Chemistry is strengthened by cooperation with the Faculty of Biology, the Faculty of Technology and the CeBiTec.
The „Center for Molecular Materials“ CM2 is an academic department with groups from chemistry and physics (coordinator B.Hoge), which aims at connections between technical know-how of industrial partners and basic research at the university.
In addition, each group is involved in national and international research cooperations.


Current work from our research groups 


47
Three-Fold Scholl-Type Cycloheptatriene Ring Formation around a Tribenzotriquinacene Core: Toward Warped Graphenes
An unprecedented 3-fold Scholl-type cycloheptatriene ring formation around a tribenzotriquinacene core is realized, producing a polyaromatic arene with a wizard hat-shaped structure. The presence of three 3,4-dimethoxyphenyl rings at the C-1, C-4 and C-8 positions of the tribenzotriquinacene skeleton is crucial to the success of this transformation.
H.-W. Ip, C.-F. Ng, H.-F. Chow and D. Kuck, J. Am. Chem. Soc. 2016, 138, 13778–13781. [DOI: 10.1021/jacs.6b05820]



45
Modular Combination of Enzymatic Halogenation of Tryptophan with Suzuki-Miyaura Cross-Coupling Reactions
The combination of the biocatalytic halogenation of l-tryptophan with subsequent chemocatalytic Suzuki-Miyaura cross-coupling reactions leads to the modular synthesis of an array of C5, C6, or C7 aryl-substituted tryptophan derivatives. In a three-step one-pot reaction, the bromo substituent is initially incorporated regioselectively by immobilized tryptophan 5-, 6-, or 7-halogenases, respectively, with concomitant cofactor regeneration. The halogenation proceeds in aqueous media at room temperature in the presence of NaBr and O2. After the separation of the biocatalyst by filtration, a Pd catalyst, base, and boronic acid are added to the aryl halide formed in?situ to effect direct Suzuki-Miyaura cross-coupling reactions followed by tert-butoxycarbonyl (Boc) protection. After a single purification step, different Boc-protected aryl tryptophan derivatives are obtained that can, for example, be used for peptide or peptidomimetic synthesis.
M. Frese, C. Schnepel, H. Minges, H. Voß, R. Feiner, N. Sewald, ChemCatChem 2016, 8, 1799–1803. [DOI: 10.1002/cctc.201600317]


Alle GDCh-Vorträge

663. Wilhelm and Else Heraeus-Seminar
CdCC 2017
Dynamics and Structure Formation of Organic Molecules on Dielectric Surfaces

25.02.2018

CM2


Magicbullet European Training Network MAGICBULLET


Core Facility



FOR 945

Nanomagnete: von der Synthese über die Wechselwirkung mit Oberflächen zur Funktion