

Graduate School Research Retreat

29th of November – 30th of November 2010

Graduate School Research Retreat

29th of November – 30th of November 2010

Conclusion
We see that crosscompiling is a satisfying way to reuse non-platform-specific code for applications on different operating systems. With the approach we described
above, the backend can still be maintained in the same way as before (namely as a Java library) and changes directly apply to both applications.

We further saw, that the iOS project had huge positive influence on the android project as well, as the crosscompilation forced a decent structure on the projects
packages.

Participants: Dorian Drost (ddrost@techfak.uni-bielefeld.de), Rebecca Fortman (rfortmann@techfak.uni-bielefeld.de),
Christian Kullik (ckullik@techfak.uni-bielefeld.de), Dustin Matzel (dmatzel@techfak.uni-bielefeld.de), Bettina Reglin (breglin@techfak.uni-bielefeld.de)

Supervisors: Sebastian Wrede (sebastian.wrede@uni-bielefeld.de), Jan Moringen (jmoringe@techfak.uni-bielefeld.de),
Michael Johannfunke(johannfunke@uni-bielefeld.de)

Automatic Code Generation for a Cross-Platform
Indoor Navigation App

Abstract — Smartphones nowadays mainly run one of two operating systems, namely Android or iOS. When creating variants
of an application for both systems, the application developer has to adopt the programming model and frameworks dictated
by the respective system while the core functionality of the application remains the same between both variants. Within this
project, we used crosscompilation from Java to Objective-C to reuse the backend of an existing Android application for
creating an iOS version of the same.

UniMaps

UniMaps is an Android application for indoor navigation on the campus of the
Bielefeld University. A first prototype was developed within the course
„Software Engineering“ in early 2017 and is developed further since then by
students from the technical faculty. The application is developed on behalf of
the „Zentrale Anlaufstelle Barrierefrei“ of the Bielefeld University and is
designed to especially consider the needs of handicapped and disabled
users. Beyond navigating on the campus, UniMaps also provides useful
information like the canteen menu, the schedule of the tram and the
possibility to customize UniMaps according to personal needs.

Figure 1: UniMaps main feature is navigating on the campus and displaying the map.

Apps for both systems

UniMaps was designed and developed for Android smartphones. However,
to reach as many users as possible, an application for Apple’s iOS system
is required. While some parts of the application are platform specific (e.g.
implementation of the database, User Interface), large parts of the code
base are algorithm-centric and thus independent of the target platform (e.g.
the A*-algorithm for the navigation, that is written in non-platform-specific
Java code). In order to avoid unnecessary and redundant work, those parts
should be reused by the iOS application.

To display the map, we used Mapsforge[2]. Mapsforge is an open source
Android library that is capable of converting osm data to a custom format,
which takes up little memory and allows fast processing of the map data.

When faced with the problem of creating an application for both Android and
iOS smartphones, two main approaches exist that save one from
programming the app twice. Those are code generation and crosscompilation.
The first one expects the code-basis to be written in a programming language
with a higher level of abstraction to be translated to both Java and Objective-C
code. Crosscompilation, on the other hand, transforms code from one
language to another (in this case from Java to Objective-C).

As the Android application written in Java already exists, crosscompilation is
the method of choice here.

Preparing the structure

A Java class one wants to crosscompile must not contain any android-specific code.
In order to fulfill this requirement, the structure of the Android project had to be
refactored largely. All platform-independent code was moved to a new module we
call the backend. This backend provides the core functionality for both applications.
In the Android project, it is imported as a Java library, while for the iOS project it acts
as source for the crosscompilation.

­ (NSString *)getDateAsStringWithInt:(jint)weekday {
[((JavaUtilCalendar *) nil_chk(cal_)) setTimeWithJavaUtilDate:currentDate_];
[((JavaUtilCalendar *) nil_chk(cal_))

addWithInt:JavaUtilCalendar_DATE withInt:weekday ­ self­>weekdayNumber_];
return [((JavaTextSimpleDateFormat *) nil_chk(dateFormat_)) formatWithJavaUtilDate:

[((JavaUtilCalendar *) nil_chk(cal_)) getTime]];
}

public String getDateAsString(int weekday) {
cal.setTime(currentDate);
cal.add(java.util.Calendar.DATE, weekday ­ this.weekdayNumber);
return dateFormat.format(cal.getTime());

}

Figure 2: A crosscompiler transforms code from one programming language into another.

J2ObjC

Crosscompiling the backend

With the J2ObjC[1] crosscompiler, we created
Objective-C code from a total of 7000 lines of Java
code. This code contains the functionality for
computing the shortest path for a route, parsing data
from the canteen as well as the PEVZ API and
implements the tram schedule.
The crosscompilation became part of the Android
CI-pipeline, assuring that the Android backend is
always crosscompileable. The iOS project imports and
crosscompiles the code automatically, considering
changes in the backend with every new build.

Figure 3: Download UniMaps
in the Google Play Store

While we where able to sucessfully crosscompile large parts of the project,
crosscompiling the Mapsforge library was not doable. In order to display the maps
on the screen, we had to find a substitute for Mapsforge. Unfortunately no other
library fulfilled our demands (i.e. being able to display custom maps and being
compatible with the used licences).

Discussion

While having the potential to avoid reprogramming code that already exists in
another programming language, crosscompiling also demands prerequisites.
Fulfilling those requires a certain effort to be taken. Among those prerequisites is a
structure of the code that separates frontend and backend in a very distinct way. The
more code to crosscompile, the more this effort is worth to be taken, obviously.

In our case crosscompiling the backend rapidly reduced the effort of the iOS
application. In particular, as within the team there was no expertise in the
Objective-C language, reprogramming the backend for the iOS application would
have required the team members to learn a new programming language, which is
costly in time and resources. By using crosscompilation this was avoided.

Conclusion
We see that crosscompiling is a satisfying way to reuse non-platform-specific code for applications on different operating systems. With the approach we described
above, the backend can still be maintained in the same way as before (namely as a Java library) and changes directly apply to both applications.

We further saw, that the iOS project had huge positive influence on the Android project as well, as the crosscompilation forced a decent structure on the project’s
packages.

[1] https://github.com/google/j2objc [2] https://github.com/mapsforge/mapsforge

https://github.com/google/j2objc
https://github.com/mapsforge/mapsforge

	PowerPoint Presentation

