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Abstract—Training a robot through demonstration requires 
robust algorithms capable of processing provided trajectories to 
generate high-quality task executions. However, the success of 
this process is highly dependent on the quality of the trajectories. 
Poor-quality trajectories hinder the ability of algorithms to learn 
and generalize effectively, while high-quality trajectories can 
improve learning outcomes, reducing the need for overly complex 
algorithms. In this work, we propose an initial method for 
comparing sets of semantically annotated trajectories used for 
robot demonstration. To evaluate the proposed methodologies, we 
recorded trajectories of 60 participants in a study setup in Virtual 
Reality where each participant tested one of three different 
control-visualization compositions. We use classical approaches 
such as Dynamic Time Warping and Discrete Fréchet-Distance 
to measure the similarity between segments of recorded trajec-
tories and show that different input devices and visualization 
combinations affect the resulting trajectory metrics. 

Index Terms—human-robot interaction; virtual reality; seman-
tic trajectories; trajectory similarity; input controls 

I. INTRODUCTION 

In the feld of robotic learning from demonstration (LfD), 
a key challenge is to obtain high-quality trajectories recorded 
from human demonstrations [1]. These trajectories serve as the 
foundation for robots to replicate human behavior or execute 
specifc tasks. As the quality of a demonstration trajectory 
directly infuences learning outcomes, a well-executed human 
demonstration is essential for effective LfD. Demonstrating a 
task to a robot in a real-world setting relies on precise object 
and motion tracking, but directly moving the robot by hand 
is challenging due to the need to counteract motor forces. 
Moreover, the latter often affects additional joints uninten-
tionally. Virtual reality (VR) provides a powerful solution to 
these challenges by providing a manipulatable environment 
with precise tracking [2], [3] and thus ensuring high accuracy 
in recording human-generated trajectories. However, in VR, 
different input devices and interfaces offer varying levels of 
immersion, each with its own advantages and disadvantages 
for demonstration quality. In addition, while methods such as 
Dynamic Time Warping, Fréchet Distance, and Least Common 

Fig. 1. The virtual setup for the bread-cutting task, showing the bread and 
knife used in the experiment. 

Subsequence are commonly used to defne differences or sim-
ilarities between trajectories recorded through demonstrations, 
they often fall short in capturing nuanced differences in task-
specifc trajectories, particularly when semantic context is 
involved. 

In order to compare trajectory quality, we analyzed trajectories 
obtained from a VR study, involving 60 participants, on 
the task of bread cutting. As shown in Figure 2, we used 
different input controls including motion capture gloves and 
a standard controller with various visualizations. The primary 
objective of this research is to investigate how to create high-
quality trajectories created by lay user participants suitable for 
robot training. To fnd nuanced differences between recorded 
trajectories, we propose new approaches by combining exist-
ing trajectory handling methods, trajectory segmentation, and 
other quality assessments. Using the cutting task as a practical 
example, we address the research question of which control-
visualization combination produces the best trajectory quality. 
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II. BACKGROUND AND RELATED WORK 

A. Demonstration learning 

Learning from demonstration, also known as imitation 
learning, has been extensively researched [4], [5]. Research 
has shown that the learning performance is closely tied to 
the quality of demonstrations [6]–[8], and optical recordings, 
such as those made with Kinect cameras [9], can degrade 
trajectory quality. This can be overcome by using virtual 
reality, where movements can be tracked in millimeter range 
[2], [3]. Demonstration recordings and trajectories directly 
refect actual movements, making it essential to understand 
the infuence of different controls and interfaces. It has already 
been shown that for common tasks in virtual reality, usability 
and task load does not differ much for gesture and controller 
based controls [10]. However, it is not clear how the different 
controls affect the quality of the resulting trajectories which 
can hold information like task performance, accuracy, veloci-
ties and pose data which all can be useful for training robots. 
While there is a lot of research that utilizes trajectories [9], 
[11], [12], methods to evaluate trajectory quality are scarce 
and, to our knowledge, not well-explored [13]. Moreover, 
while methods like smoothness and continuity are sometimes 
used for similarity [14], they do not work for trajectory paths 
where abrupt movement changes are necessary for success, i.e 
for the sawing movements during cutting. 

B. Trajectory similarity measures 

Since the similarity of trajectories can be used to dif-
ferentiate between recordings, effective similarity measures 
are essential. Basic trajectory similarity measures are well-
established, with various methods focusing on different as-
pects. For comparing the direct metric distance between two 
trajectories of the same length the Lock-step Euclidean Dis-
tance (LSED) is the most straightforward method [15]. As it 
compares point by point for equal length trajectories, it does 
not account for shape similarity and is highly sensitive to ve-
locity variations. Therefore it is not suitable for our approach. 
This also counts for the Least Common Subsequence (LCSS) 
[12]. The LCSS is also a measure of similarity, although it 
focuses on fnding the amount pairs with similar points. Two 
points are similar when their distance falls below a defned 
threshold. It does not rate the similarity as a whole and gives 
bad results when points are for example partially clustered. 
The Edit Distance on Real Sequences [16] also calculates 
similarity in a form of, given a defned threshold distance, 
how many points of the trajectory would needed to be edited 
such that all points are below the threshold. It shares the same 
limitations as LCSS and is therefore unsuitable for quality 
assessment. 

To overcome velocity and clustering problems Dynamic 
Time Warping (DTW) can be used. [17] [18]. It can handle 
different speeds and timings but cannot be used as a metric 
since it does not satisfy triangle inequality [15]. Finally, there 
is the Fréchet distance (FD) and its discrete approximation 
(DFD), to measure similarity in form of a distance between 

Fig. 2. The different input and visualization combinations and their virtual 
and physical looks when holding the knife. (a) and (d) depict the Manus 
gloves and their visualization, (b) and (e) show one input medium with a 
Valve Index controller and its visualization, and (c) and (f) show the other 
visualization of the Valve Index Controller. 

two trajectories [19] [20]. It is often called the dog-leash 
distance. If two trajectories would be a dog and the owner, the 
distance given here measures the minimal length of the leash to 
make that walk possible. For our analysis we use the DFD and 
DTW, since they give an estimate about the shape similarity 
of our trajectories; particularly of the segmented ones. 

C. Semantic trajectories 

It is not enough to measure the trajectory as a whole. Since 
tasks often include subtasks with varying levels of importance, 
it is reasonable to divide trajectories into sub-trajectories. For 
instance, movements such as headset adjustments should not 
be included, as they do not contribute to the task. Since our 
trajectories additionally have annotations like events or stops, 
they are called semantic trajectories [21]. We can use those 
semantic events as segmentation candidates to automate the 
segmentation process. 

While research has compared automated and manual an-
notation for creating semantic trajectories [22] or segmenting 
those [23]–[25], assessing their importance and quality, and 
identifying which input mediums yield the best results remain 
underexplored. Through our study and the resulting trajectories 
presented in this paper, we contribute to the ongoing efforts 
to address these questions. 

III. STUDY DESIGN 

In our study, participants were placed in a virtual world 
where they performed everyday tasks in a physics-based 
scenario designed to be as realistic as possible. One of their 
tasks was to cut bread with a knife, as shown in Figure 1. 

A. Participants 

We recruited 60 participants (32 male, 27 female, 1 diverse), 
all right-handed, mostly students aged 18 to 34 from social sci-
ences, engineering, or education. Most of them were inexperi-
enced with VR and its controls. All subjects provided informed 
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consent before participating, and the study was conducted in 
accordance with the Declaration of Helsinki, with protocol 
approval from Bielefeld University’s Ethics Committee. 

B. Input Controls 

For the study, participants were randomly assigned to one of 
the three control-visualization combinations shown in Figure 
2. The frst used Manus Quantum XR motion capture gloves 
(M) to track the precise movements of the user’s hands and 
fngers [26]. Users could grab objects in various ways, such as 
using pinch gestures with two or more fngers or performing 
fst grabs. The second combination used a valve index con-
troller1. Using touch and force sensors, the user’s hand was 
simulated in VR (H). By applying force to the controller users 
could grab and hold virtual objects. The third and last control 
used the same controller but in VR the controller itself was 
shown (C). In this case, grasping was performed by pressing 
the controller’s trigger button, as is standard in state-of-the-art 
VR controllers. We selected these input mediums and their 
respective controls to balance state-of-the-art techniques, such 
as those used in gaming, with natural interactions, aiming to 
assess their impact on teaching robots tasks. 

C. Task Description 

In the study, users were tasked with completing some 
common kitchen activities, among them, the task of cutting 
bread. Here, a bread was placed on a table in the virtual 
scene and a knife was positioned beside it. The participants 
should grasp the knife and cut the bread exactly three times. 
No automated task completion mechanism was provided. The 
participants were told that they should let us know when they 
thought that they completed the task successfully. 

IV. RESULTS AND ANALYSIS 

This paper focuses on the trajectories captured during the 
study. The extracted trajectories for this task concerned real 
hand movements in VR, including reaching for and grasping 
the knife, holding the knife while moving it to the bread, 
cutting the bread three times, and fnally placing the knife 
back down. 

A. Trajectory Segmentation 

As the complete task of cutting bread with a knife consists 
of multiple parts, each with its own potential quality, a single 
measurement for the entire trajectory would not be suitable. 
Instead, the trajectory was divided into segments, each eval-
uated individually. For example, the segment where the hand 
approaches the knife focuses on a different aspect than the 
segment involving the cutting action. The frst focuses on the 
correct endpoint where the latter focuses on the movements 
during the actions. Therefore, segmentation points were cho-
sen based on changes in the subtasks. In the cutting scenario 
these are for example the points where the knife is grasped 
and fnally placed back down. In general, the one optimal 
trajectory may not exist, and there are often multiple solutions 

1https://www.valvesoftware.com/en/index/controllers 

of similar high quality. But there is an optimal trajectory for 
this task if we consider the trajectory of the semantics. The 
task description infers that the bread has to be cut three times. 
Therefore the optimal trajectory considering only the semantic 
aspects would start with no action, followed by a grasp of the 
knife which in turn is followed by three cuts and afterward 
the placing down of the knife leaving with and empty action 
set. 

B. Semantic Trajectory 

The semantic approach focuses solely on the actions within 
the trajectory, disregarding its spatial aspects. With this the du-
ration of actions, the position where they were happening and 
additionally their correct order and amount can be confrmed. 
For example, in a task where the user cuts the bread exactly 
once, the semantic order of events would be represented as 

({}, {grasp}, {grasp, cut}, {grasp}, {}) 

indicating that the hand was empty at the beginning, then 
grasped an object, presumably the knife, cut the bread one 
time and then released the grasp such the hand was empty 
again. At the same time this is the optimal semantic trajectory 
as it contains only the necessary actions. For the study task, the 
optimal trajectory for three cuts could be used as a flter to re-
move all trajectories that have irrelevant or erroneous actions. 
However, instead we calculate the Levenshtein distance [27] to 
measure the semantic distance between two given trajectories. 
If the distance is zero, the two semantic trajectories are equal 
and if not the result will indicate how many insertions, edits, 
or deletions are necessary to align them. We calculated the 
Levenshtein distance for the whole trajectory, and all other 
distances only for the cutting part since what happened before 
and after that part might vary heavily. The cutting part starts 
with the knife grasp before the frst cut and ends after the last 
cut. A cut was recorded if the knife entered the bread on one 
side. A cut was considered successful if the knife exited the 
bread from the opposite side. Unsuccessful cuts occurred when 
the knife entered the bread from the top, initiated the cutting 
action, but exited from the same side without cutting through. 
In real-world scenarios, this would be considered a failure, and 
the same criteria was applied in the virtual setting too. This 
ensures that all subtrajectories are compared only to similar 
subtrajectories considering the cutting subtask which starts by 
grasping the knife and ends with the last cut. We then analyzed 
the resulting trajectories with different metrics in regards to 
different aspects of their attributes, like pairwise average DFD, 
pairwise average DTW, velocities and Levenshtein distances. 
For the latter, each cutting action, independent of its success, 
was counted as it was recorded. The results are shown in Table 
I. We also calculated signifcances regarding velocity and Lev-
enshtein distance. A Kruskal-Wallis test revealed signifcant 
differences for both measurements. Post-hoc pairwise Mann-
Whitney U tests with Holm correction indicated that Manus 
users exhibited lower average velocities than users with the 
controller and hand visualization (p < 0.05). Additionally, 
when considering the average Levensthein distance, Manus 
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Fig. 3. Average velocities per user. Sorted for better visualization. Blue bars indicate a semantically perfect cutting execution and thus a Levenshtein distance 
of zero, and orange bars indicate a distance of greater than zero. 

hands signifcantly outperformed both other controls (p < 0.05 
for both). It shows that for Manus gloves, the amount of 

Metric Manus(M) Hand(H) Controller(C) 

#Levenshtein = 0 14 5 4 
#Levenshtein > 0 6 14 16 
Levenshtein Mean 0.7HC 3.68 4.65 
Levenshtein Variance 1.31 19.8 53.33 
Velocity Mean 0.16H 0.24 0.20 
Velocity Variance 0.0033 0.0048 0.0051 
Discrete Frechet Dist. 0.22 0.66 0.55 
Dynamic Timewarping Dist. 44.96 139.87 82.48 

#Levenshtein = 0* 14 5 4 
#Levenshtein > 0* 5 10 14 
Velocity Mean* 0.15 0.26 0.19 
Velocity Variance* 0.0032 0 0.0042 0.0048 
Discrete Frechet Dist.* 0.22 0.48 0.51 
Dynamic Timewarping Dist.* 42.86 90.67 66.69 

TABLE I 
CHARACTERISTICS OF THE CUTTING TRAJECTORIES OF THE USER 

GROUPS, EXCLUDING SUBTRAJECTORIES BEFORE AND AFTER. GREY 
HIGHLIGHTS INDICATE SEMANTIC ANALYSES, SUPERSCRIPTS DENOTE 

SIGNIFICANT DIFFERENCES, AND ASTERISKS MARK TRAJECTORIES 
LIMITED TO THE FIRST THREE CUTS, EXCLUDING THOSE WITH FEWER 

THAN THREE. 

trajectories that ft the perfect semantic trajectory, i.e. have 
a Levenshtein distance of zero, is higher than for the other 
controls. Also the mean and variance of the Levenshtein 
distance is also lower for the Manus Hands. For a clearer 
evaluation of the velocity values, the sorted average velocities 
per user are shown in Figure 3. Here, blue bars denote a 
Levenshtein distance of zero, and orange ones indicate a 
distance of greater zero. 

V. DISCUSSION AND FUTURE WORK 

Considering the presented results of Table I, it shows that 
the Manus gloves have in comparison to the other input 
modality the least errors regarding the semantic trajectories. 
Additionally, the velocities and distances between the recorded 
trajectories are the lowest for Manus gloves. Figure 3 enhances 
the argument of the velocities. Lower velocities appear to 
correlate with more accurate executions of semantic trajec-
tories. This indicates that selecting appropriate inputs and 

visualizations affects the quality of trajectories, a factor often 
overlooked. However, the general relationship between these 
measures and other not yet considered measures remains un-
clear. Also for generalization in more varied tasks, the relevant 
qualities per subtask need to be evaluated. However, since of-
ten subtasks are similar, already known quality measurements 
can then be reused and weighted according to the relevance 
of the subtask. For this study, we focused exclusively on the 
knife-cutting task, in particular the grasping and cutting actions 
was relevant in our case. The focused cutting subtask was path-
oriented, meaning that the method of execution was critical. 
We accounted for this by including partially completed cuts in 
our analysis. However, for tasks where execution methods are 
crucial, more robust measurement techniques are needed. We 
only used two standardized similarity measures which each has 
its own weaknesses. For example, a key limitation of the DFD 
is its susceptibility to outliers. The DFD calculates the largest 
point-wise smallest distance, meaning that a single distant 
point in one trajectory can dominate the value, rendering the 
rest of the trajectory irrelevant. On the other hand, the DTW 
algorithm provides a better similarity measure by minimizing 
the sum of point-wise distances. However, it is not a metric, 
as it fails to satisfy the triangle inequality. Therefore, our next 
steps involve extending and improving these measurements 
while analyzing the other tasks conducted in the study. We 
will further explore trajectory features such as acceleration, 
pauses, and pace, as demonstrated by Vollmer et al. [28]. 
Subsequently, we aim to develop a general segmentation 
framework for more complex tasks, where path-oriented sub-
tasks alternate with goal-oriented ones. Additionally, we plan 
to identify differences in recordings and, by combining the 
results, investigate optimal environments and input modality 
choices for generating high-quality trajectories. These trajecto-
ries, produced by both lay users and experts, will be applicable 
to various purposes, including robot training. Finally, we plan 
to annotate and publish all recorded trajectories to enable other 
research groups to utilize this data for training purposes. 
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