New insights on the chiral magnetic effect from lattice QCD simulations

Gergely Endrődi

University of Bielefeld / Eötvös University Budapest

STAR collaboration meeting, October 25, 2024

New insights on the chiral magnetic effect from lattice QCD simulations

Gergely Endrődi

in collaboration with:

Bastian Brandt, Eduardo Garnacho, Javier Hernández, Gergely Markó, Laurin Pannullo, Leon Sandbote, Dean Valois

Appetizer

first fully non-perturbative determination of in-equilibrium anomalous transport coefficients

chiral separation effect

(local) chiral magnetic effect

& Brandt, Endrődi, Garnacho, Markó, JHEP 02 142

Brandt, Endrődi, Garnacho, Markó, Valois, 2409.17616
 Brandt, Endrődi, Garnacho, Markó, JHEP 09 092 ¹/²⁷

Outline

introduction

- anomalous transport phenomena in- and out-of equilibrium
- in-equilibrium chiral magnetic effect
- in-equilibrium chiral separation effect
- local in-equilibrium chiral magnetic effect
- out-of-equilibrium chiral magnetic effect
- summary

Introduction

Strong interactions

explain 99.9% of visible matter in the Universe

elementary particles: quarks and gluons

▶ elementary fields: $\psi(x)$ and $\mathcal{A}_{\nu}(x)$ enter the QCD Lagrangian

$$\mathcal{L}_{\text{QCD}} = \frac{1}{4} \operatorname{Tr} F_{\mu\nu}(\underline{g_s}, \mathcal{A})^2 + \bar{\psi}[\gamma_{\nu}(\partial_{\nu} + i\underline{g_s}\mathcal{A}_{\nu}) + m]\psi$$

• $g_s = \mathcal{O}(1) \rightsquigarrow \text{confinement}$

$$m_u$$
, $m_d pprox 3-5$ MeV, $m_p = 938$ MeV

iggs boson

► asymptotic freedom at high energy scales ~→ deconfinement

▶ heavy ion collisions $T \lesssim 10^{12} \, {}^\circ C = 200$ MeV, $n \lesssim 0.12$ fm⁻³ $B \lesssim 10^{19}$ G = 0.3 GeV²/e

▶ heavy ion collisions $T \lesssim 10^{12} \, {}^\circ C = 200$ MeV, $n \lesssim 0.12$ fm⁻³ $B \lesssim 10^{19}$ G = 0.3 GeV²/e

neutron stars
$$T \lesssim 1$$
 keV, $n \lesssim 2$ fm⁻³
 magnetars $B \lesssim 10^{15}$ G

Lattimer, Nature Astronomy 2019

▶ heavy ion collisions $T \lesssim 10^{12} \,^{\circ}C = 200$ MeV, $n \lesssim 0.12$ fm⁻³ $B \lesssim 10^{19}$ G = 0.3 GeV²/e

neutron stars
$$T \lesssim 1$$
 keV, $n \lesssim 2$ fm⁻³
 magnetars $B \lesssim 10^{15}$ G

▶ neutron star mergers $T \lesssim 50$ MeV

▶ heavy ion collisions $T \lesssim 10^{12} \, {}^\circ C = 200$ MeV, $n \lesssim 0.12$ fm⁻³ $B \lesssim 10^{19}$ G = 0.3 GeV²/e

neutron stars
$$T \lesssim 1$$
 keV, $n \lesssim 2$ fm⁻³
 magnetars $B \lesssim 10^{15}$ G

- \blacktriangleright neutron star mergers $T \lesssim 50$ MeV
- ▶ eary universe, QCD epoch $T \leq 200$ MeV standard scenario: $n \approx 0$

Major experimental and observational campaigns

Major experimental and observational campaigns

Major experimental and observational campaigns

$$\mathcal{Z} = \int \mathcal{D} \mathcal{A}_{
u} \, \mathcal{D} ar{\psi} \, \mathcal{D} \psi \, \exp igg(- \int d^4 x \, \mathcal{L}_{
m QCD}(x) igg)$$

discretize QCD action on space-time lattice & Wilson, PRD 10 (1974)

continuum limit $a \rightarrow 0$ in a fixed physical volume: $N \rightarrow \infty$

dimensionality: $10^{9-10} \rightsquigarrow$ Monte Carlo simulations on supercomputers

SuperMUC-NG

nvidia.com

Bielefeld GPU cluster

amd.com

• gluon links $U_{\nu} = \exp(i a A_{\nu})$

after fermion path integral

$$\mathcal{Z} = \int \mathcal{D} U \, e^{-\mathcal{S}_{g}[U]} \, \mathsf{det}[
ot\!\!D(U \quad) + m]$$

• gluon links $U_{\nu} = \exp(i a A_{\nu})$

after fermion path integral

$$\mathcal{Z} = \int \mathcal{D} U \, e^{-\mathcal{S}_{g}[U]} \, \det[
ot\!\!D(U, {oldsymbol u}) + m]$$

▶ including a background electromagnetic field A_{ν} via photon links $u_{\nu} = \exp(iaA_{\nu})$

• gluon links $U_{\nu} = \exp(i a A_{\nu})$

after fermion path integral

$$\mathcal{Z} = \int \mathcal{D}U \, e^{-S_g[U]} \, \det[
otin U(U, u) + m]$$

▶ including a background electromagnetic field A_{ν} via photon links $u_{\nu} = \exp(iaA_{\nu})$

▶ this is the Wick-rotated, Euclidean formulation: it works in equilibrium

• gluon links $U_{\nu} = \exp(i a A_{\nu})$

after fermion path integral

$$\mathcal{Z} = \int \mathcal{D}U \, e^{-S_g[U]} \, \det[\not\!D(U, u) + m]$$

▶ including a background electromagnetic field A_{ν} via photon links $u_{\nu} = \exp(iaA_{\nu})$

- ▶ this is the Wick-rotated, Euclidean formulation: it works in equilibrium
- ▶ discretize space $L = a \cdot N_s$ and imaginary time $1/T = a \cdot N_t$ continuum limit: $N_s, N_t \to \infty$

• gluon links $U_{\nu} = \exp(i a A_{\nu})$

after fermion path integral

$$\mathcal{Z} = \int \mathcal{D}U \, e^{-S_g[U]} \, \det[\not\!D(U, u) + m]$$

▶ including a background electromagnetic field A_{ν} via photon links $u_{\nu} = \exp(iaA_{\nu})$

- ▶ this is the Wick-rotated, Euclidean formulation: it works in equilibrium
- ▶ discretize space $L = a \cdot N_s$ and imaginary time $1/T = a \cdot N_t$ continuum limit: $N_s, N_t \to \infty$
- boundary conditions: periodic in space and (anti)periodic in imaginary time

Magnetic fields and chiral imbalance: anomalous transport

Anomalous transport

 usual transport: vector current due to electric field

$$\langle \boldsymbol{J} \rangle = \boldsymbol{\sigma} \cdot \boldsymbol{E}$$

chiral magnetic effect (CME)

Fukushima, Kharzeev, Warringa, PRD 78 (2008) vector current due to chirality and magnetic field

$$\langle m{J}
angle = \sigma_{
m CME} \cdot m{B}$$

chiral separation effect (CSE)

Son, Zhitnitsky, PRD 70 (2004)
 Metlitski, Zhitnitsky, PRD 72 (2005)
 axial current due to baryon number and magnetic field

$$\langle J_5
angle = \sigma_{
m CSE} \cdot oldsymbol{B}$$

Phenomenological and theoretical relevance

experimental observation of CME in condensed matter systems

 A Li, Kharzeev, Zhan et al., Nature Phys. 12 (2016)

experimental searches for CME and related observables in heavy-ion collisions
 STAR collaboration, PRC 105 (2022)

 serves as indirect way to probe topological fluctuations and CP-odd domains in heavy-ion collisions

Phenomenological and theoretical relevance

experimental observation of CME in condensed matter systems

 A Li, Kharzeev, Zhan et al., Nature Phys. 12 (2016)

experimental searches for CME and related observables in heavy-ion collisions
 STAR collaboration, PRC 105 (2022)

serves as indirect way to probe topological fluctuations and CP-odd domains in heavy-ion collisions

recent reviews: A Kharzeev, Liao, Voloshin, Wang, PPNP 88 (2016)
 A Kharzeev, Liao, Tribedy, 2405.05427

 disclaimer: this talk is not about feasibility of experimental detection, but about the theory of anomalous transport

General (handwaving) argument

spin, momentum chiral magnetic effect

General (handwaving) argument

spin, momentum chiral separation effect

General (handwaving) argument – issues

- quantum theory requires ultraviolet regularization
- massless vs. massive fermions
- strong interactions between fermions
- in-equilibrium vs. out-of-equilibrium nature

General (handwaving) argument – issues

- quantum theory requires ultraviolet regularization
- massless vs. massive fermions
- strong interactions between fermions

• example: charge transport due to electric field $\boldsymbol{E} \parallel \boldsymbol{e}_1$

• example: charge transport due to electric field $\boldsymbol{E} \parallel \boldsymbol{e}_1$

▶ example: charge transport due to electric field $E \parallel e_1$

▶ example: charge transport due to electric field $\boldsymbol{E} \parallel \boldsymbol{e}_1$

out-of equilibrium linear response:

time-dependent response to time-dependent perturbation (electric conductivity)

• example: charge transport due to electric field $\boldsymbol{E} \parallel \boldsymbol{e}_1$

out-of equilibrium linear response:

time-dependent response to time-dependent perturbation (electric conductivity)

leading to an equilibrium distribution (electric polarization/susceptibility)

 \blacktriangleright example: charge transport due to electric field $m{E} \parallel m{e}_1$

out-of equilibrium linear response:

time-dependent response to time-dependent perturbation (electric conductivity)

leading to an equilibrium distribution (electric polarization/susceptibility)

same story can be told for CME

No currents in equilibrium

- Bloch's theorem: Bohm Phys. Rev. 75 (1949) N. Yamamoto, PRD 92 (2015) persistent electric currents do not exist in ground state of quantum systems
- applies to conserved currents
- applies to global (spatially averaged) currents
- ▶ applies in the thermodynamic limit ($V \to \infty$)

No currents in equilibrium

- Bloch's theorem: Bohm Phys. Rev. 75 (1949) N. Yamamoto, PRD 92 (2015) persistent electric currents do not exist in ground state of quantum systems
- applies to conserved currents
- applies to global (spatially averaged) currents
- ▶ applies in the thermodynamic limit ($V \to \infty$)
- in-equilibrium CME is not possible
No currents in equilibrium

- Bloch's theorem: Bohm Phys. Rev. 75 (1949) N. Yamamoto, PRD 92 (2015) persistent electric currents do not exist in ground state of quantum systems
- applies to conserved currents
- applies to global (spatially averaged) currents
- ▶ applies in the thermodynamic limit ($V \to \infty$)
- in-equilibrium CME is not possible
- ▶ in-equilibrium CSE is possible

No currents in equilibrium

- Bloch's theorem: Bohm Phys. Rev. 75 (1949) N. Yamamoto, PRD 92 (2015) persistent electric currents do not exist in ground state of quantum systems
- applies to conserved currents
- applies to global (spatially averaged) currents
- ▶ applies in the thermodynamic limit ($V \to \infty$)
- in-equilibrium CME is not possible
- in-equilibrium CSE is possible
- in-equilibrium local CME currents are possible

Chiral magnetic effect in equilibrium

CME and inconsistencies

▶ parameterize chiral imbalance n_5 by a chiral chemical potential μ_5 *P* Fukushima, Kharzeev, Warringa, PRD 78 (2008)

• CME for weak chiral imbalance $(B = Be_3)$

$$\langle J_3 \rangle = \sigma_{\mathrm{CME}} B = \mathcal{C}_{\mathrm{CME}} \mu_5 B + \mathcal{O}(\mu_5^3)$$

from Bloch's theorem it follows that in equilibrium

 $C_{\mathrm{CME}} = 0$ \checkmark

several results in the literature give incorrectly

$$C_{\mathrm{CME}} = rac{1}{2\pi^2} \, \mathbf{I}$$

CME and inconsistencies

▶ parameterize chiral imbalance n_5 by a chiral chemical potential μ_5 *P* Fukushima, Kharzeev, Warringa, PRD 78 (2008)

• CME for weak chiral imbalance $(B = Be_3)$

$$\langle J_3
angle = \sigma_{\mathrm{CME}} B = \mathcal{C}_{\mathrm{CME}} \mu_5 B + \mathcal{O}(\mu_5^3)$$

from Bloch's theorem it follows that in equilibrium

 $C_{\mathrm{CME}} = 0$ \checkmark

several results in the literature give incorrectly

$$C_{\mathrm{CME}} = rac{1}{2\pi^2} \, \mathbf{I}$$

careful regularization is required

Perturbation theory

triangle diagram

$$\Gamma^{\mu\nu\rho}_{AVV}(p+q,p,q) = \frac{-p-q}{\gamma_{5}\gamma^{\mu}} + \frac{-p-q}{\gamma_{5}\gamma^{\mu$$

gives in-equilibrium CME coefficient

$$C_{\mathsf{CME}} = \lim_{p,q
ightarrow 0} rac{1}{q_1} \, \Gamma^{023}_{AVV}(p+q,p,q)$$

► also gives the axial anomaly Peskin-Schroeder 19.2

$$\langle \partial_{\mu} J^{\mu}_{5}
angle ~\sim ~(p+q)_{\mu} \Gamma^{\mu
u
ho}_{AVV} (p+q,p,q) A_{
u} A_{
ho}$$

Regularization sensitivity – anomaly

naive regularization

$$(p+q)_{\mu}\Gamma^{\mu
u
ho}_{AVV}(p+q,p,q)A_{
u}A_{
ho}=mP_5(p,q)$$

Pauli-Villars regularization

(regulator particles s=1,2,3 with $c_s=\pm 1$ and $m_s
ightarrow \infty$)

$$(p+q)_{\mu}\Gamma^{\mu
u
ho}_{AVV}(p+q,p,q)A_{
u}A_{
ho} = mP_5(p,q) + \sum_{s=1}^{3}c_sm_sP^{
u
ho}_{5,s}(p,q)A_{
u}A_{
ho}$$

 $\xrightarrow{m_s o \infty} mP_5(p,q) + rac{\epsilon^{lphaeta
u
ho}F_{lpha
u}F_{eta
ho}}{16\pi^2} \checkmark$

Regulator sensitivity – CME

naive regularization

$$C_{\mathsf{CME}} = \lim_{p,q,p+q o 0} rac{1}{q_1} \, \Gamma^{023}_{AVV}(p+q,p,q) = rac{1}{2\pi^2} \, {}^{\ell}$$

Pauli-Villars regularization

$$C_{\mathsf{CME}} = \lim_{p,q,p+q \to 0} \frac{1}{q_1} \Gamma_{AVV}^{023}(p+q,p,q) = \frac{1}{2\pi^2} + \sum_{s=1}^3 \frac{c_s}{2\pi^2} = 0 \checkmark$$

• in equilibrium, C_{CME} vanishes due to anomalous contribution

CME in equilibrium – lattice simulations

▶ seminal lattice determination of $\langle J_3 \rangle$ at $B \neq 0$, $\mu_5 \neq 0$ \mathscr{P} A. Yamamoto, PRL 107 (2011)

▶ coefficient $C_{
m CME} pprox 0.025 \sim 1/(4\pi^2)$ 1/(4 π^2)

▶ seminal lattice determination of $\langle J_3 \rangle$ at $B \neq 0$, $\mu_5 \neq 0$ \mathscr{P} A. Yamamoto, PRL 107 (2011)

▶ coefficient $C_{
m CME} \approx 0.025 \sim 1/(4\pi^2)$ ₹

A. Yamamoto, PRL 107 (2011) used a non-conserved electric current

$$J_{\nu}^{\rm non-cons} = \bar{\psi}(n)\gamma_{\nu}\psi(n)$$

▶ seminal lattice determination of $\langle J_3 \rangle$ at $B \neq 0$, $\mu_5 \neq 0$ \mathscr{P} A. Yamamoto, PRL 107 (2011)

▶ coefficient $C_{
m CME} \approx 0.025 \sim 1/(4\pi^2)$ ₹

A. Yamamoto, PRL 107 (2011) used a non-conserved electric current

$$J_
u^{
m non-cons} = ar{\psi}(n) \gamma_
u \psi(n) \qquad \qquad J_
u^{
m cons} \sim ar{\psi}(n) \gamma_
u U_
u(n) \psi(n+\hat{
u})$$

▶ seminal lattice determination of $\langle J_3 \rangle$ at $B \neq 0$, $\mu_5 \neq 0$ \mathscr{P} A. Yamamoto, PRL 107 (2011)

▶ coefficient $C_{\rm CME} \approx 0.025 \sim 1/(4\pi^2)$ ₹

A. Yamamoto, PRL 107 (2011) used a non-conserved electric current

 $J_{\nu}^{\rm non-cons} = \bar{\psi}(n)\gamma_{\nu}\psi(n) \qquad \qquad J_{\nu}^{\rm cons} \sim \bar{\psi}(n)\gamma_{\nu}U_{\nu}(n)\psi(n+\hat{\nu})$

Conserved current: $C_{\rm CME} = 0 \checkmark \mathscr{A}$ Brandt, Endrődi, Garnacho, Markó, JHEP 09 (2024)

CME in equilibrium – final result

- full QCD simulations with staggered quarks at physical quark masses, extrapolated to the continuum limit employing the conserved electric current
- global CME current vanishes in equilibrium

& Brandt, Endrődi, Garnacho, Markó, JHEP 09 (2024)

Chiral separation effect in equilibrium

Chiral separation effect

- axial current due to magnetic field and baryon density
 Son, Zhitnitsky, PRD 70 (2004)
 Metlitski, Zhitnitsky, PRD 72 (2005)
- parameterize baryon density n by chemical potential μ
- CSE for small density $(\boldsymbol{B} = B\boldsymbol{e}_3)$

$$\langle J_{35} \rangle = \sigma_{\rm CSE} B = C_{\rm CSE} \mu B + \mathcal{O}(\mu^3)$$

- ▶ Bloch's theorem allows in-equilibrium CSE $(\partial_{\nu}J_{\nu 5} \neq 0)$
- regularization less intricate, but conserved vector current on lattice is important
- previous lattice efforts & Puhr, Buividovich, PRL 118 (2017)
 Buividovich, Smith, von Smekal, PRD 104 (2021)

CSE in equilibrium – final result

 full QCD simulations with staggered quarks at physical quark masses, extrapolated to the continuum limit employing the conserved electric current

Parandt, Endrődi, Garnacho, Markó, JHEP 02 (2024)

Local chiral magnetic effect

Inhomogeneous magnetic fields

- up to now: homogeneous magnetic background
- ▶ off-central heavy-ion collisions: inhomogeneous fields <a>P Deng et al., PLB 742 (2015)

Inhomogeneous magnetic fields

- up to now: homogeneous magnetic background
- ▶ off-central heavy-ion collisions: inhomogeneous fields <a>P Deng et al., PLB 742 (2015)

Inhomogeneous magnetic fields

- up to now: homogeneous magnetic background
- ▶ off-central heavy-ion collisions: inhomogeneous fields <a>Phi Deng et al., PLB 742 (2015)

- ► consider profile $B(x) = B \cosh^{-2}(x/\epsilon)$ \checkmark Dunne, hep-th/0406216 with $\epsilon \sim 0.6$ fm
- impact on thermodynamic observables in QCD and phase diagram

 P Brandt, Endrődi, Markó, Valois, JHEP 07 (2024)

▶ response for weak μ_5 for homogeneous *B*

 $\langle J_3 \rangle = C_{
m CME} \, \mu_5 B$

▶ response for weak μ_5 for homogeneous and inhomogeneous *B*

$$\langle J_3 \rangle = C_{\text{CME}} \mu_5 B$$
 $\langle J_3(x_1) \rangle = \mu_5 \underbrace{\int dx'_1 C_{\text{CME}}(x_1 - x'_1)B(x'_1)}_{G(x_1)}$

• Bloch's theorem allows local currents if $\int dx_1 \langle J_3(x_1) \rangle = 0$

▶ response for weak μ_5 for homogeneous and inhomogeneous *B*

$$\langle J_3 \rangle = C_{\text{CME}} \mu_5 B$$
 $\langle J_3(x_1) \rangle = \mu_5 \underbrace{\int dx'_1 C_{\text{CME}}(x_1 - x'_1)B(x'_1)}_{G(x_1)}$

• Bloch's theorem allows local currents if $\int dx_1 \langle J_3(x_1) \rangle = 0$

▶ response for weak μ_5 for homogeneous and inhomogeneous *B*

$$\langle J_3 \rangle = C_{\text{CME}} \mu_5 B$$
 $\langle J_3(x_1) \rangle = \mu_5 \underbrace{\int dx'_1 C_{\text{CME}}(x_1 - x'_1)B(x'_1)}_{G(x_1)}$

• Bloch's theorem allows local currents if $\int dx_1 \langle J_3(x_1) \rangle = 0$

▶ response for weak μ_5 for homogeneous and inhomogeneous *B*

$$\langle J_3 \rangle = C_{\text{CME}} \mu_5 B$$
 $\langle J_3(x_1) \rangle = \mu_5 \underbrace{\int dx'_1 C_{\text{CME}}(x_1 - x'_1)B(x'_1)}_{G(x_1)}$

• Bloch's theorem allows local currents if $\int dx_1 \langle J_3(x_1) \rangle = 0$

▶ response for weak μ_5 for homogeneous and inhomogeneous *B*

$$\langle J_3 \rangle = C_{\text{CME}} \mu_5 B$$
 $\langle J_3(x_1) \rangle = \mu_5 \underbrace{\int dx'_1 C_{\text{CME}}(x_1 - x'_1) B(x'_1)}_{G(x_1)}$

• Bloch's theorem allows local currents if $\int dx_1 \langle J_3(x_1) \rangle = 0$

▶ response for weak μ_5 for homogeneous and inhomogeneous *B*

$$\langle J_3 \rangle = C_{\text{CME}} \mu_5 B$$
 $\langle J_3(x_1) \rangle = \mu_5 \underbrace{\int dx'_1 C_{\text{CME}}(x_1 - x'_1)B(x'_1)}_{G(x_1)}$

- Bloch's theorem allows local currents if $\int dx_1 \langle J_3(x_1) \rangle = 0$
- local current in the absence of color interactions

Local currents in QCD

- full QCD simulations with staggered quarks at physical quark masses, extrapolated to the continuum limit employing the conserved electric current
- non-trivial localized CME signal & Brandt, Endrődi, Garnacho, Markó, Valois, 2409.17616

Local currents in QCD

- full QCD simulations with staggered quarks at physical quark masses, extrapolated to the continuum limit employing the conserved electric current
- non-trivial localized CME signal & Brandt, Endrődi, Garnacho, Markó, Valois, 2409.17616

Local currents in QCD

- full QCD simulations with staggered quarks at physical quark masses, extrapolated to the continuum limit employing the conserved electric current
- ▶ non-trivial localized CME signal 🥜 Brandt, Endrődi, Garnacho, Markó, Valois, 2409.17616

may guide experimental efforts to detect CME

Inhomogeneous chiral imbalance

• inhomogeneous $B(x_1)$ and inhomogeneous $\mu_5(x_1)$

Out-of-equilibrium phenomena

Out-of-equilibrium transport

► Kubo formula: transport coefficients from spectral functions

spectral function from Euclidean correlators on the lattice

$$G(x_4) = \int \mathrm{d}\omega \,\rho(\omega) \underbrace{\mathcal{K}(\omega, x_4)}_{\text{known kerne}}$$

ill-posed problem, may be studied using various strategies

Euclidean correlators

$$G_{\mathrm{CME}}(x_4) = \langle J_3(0) J_{45}(x_4) \rangle \qquad \qquad G_{\mathrm{CSE}}(x_4) = \langle J_{35}(0) J_4(x_4) \rangle$$

first results for CME @ Buividovich, 2404.14263

Summary

- CME subtleties: in- / out-of-equilibrium
- careful regularization crucial in-equilibrium global CME vanishes

 $\frac{0.04}{C_{CSE}}$ 0.03

0.02

0.01

0.00

▶ in-equilibrium CSE in full QCD

▶ in-equilibrium local CME in QCD

Chiral density

 \blacktriangleright chiral density n_5 is parameterized by chiral chemical potential μ_5

$$n_5(\mu_5) = \chi_5 \, \mu_5 + \mathcal{O}(\mu_5^3), \qquad \chi_5 = rac{T}{V} \left. rac{\partial^2 \log \mathcal{Z}}{\partial \mu_5^2}
ight|_{\mu_5 = 0}$$

