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Abstract

Under which conditions do humans cooperate with machines? This study explores human

and algorithmic cooperation in the infinitely repeated Prisoner’s Dilemma, focusing on a

critical threshold for cooperation. Using online experiments, we assess how replacing hu-

man opponents with learning algorithms – either human-mimicking or profit-maximizing

– affects cooperation rates. Our results show that human cooperation is influenced by

opponent type and strategy, with a higher predictive power of the theoretical threshold

when interacting with AI maximizing profits.
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1 Introduction

As machines become more sophisticated, particularly with the increasing deployment of arti-

ficial intelligence (AI) and advanced learning algorithms in economic contexts such as market

pricing, understanding the conditions under which machines and humans cooperate effectively

is of growing importance. A rapidly expanding body of literature is exploring the interac-

tion and cooperation between humans and various types of learning algorithms, as well as

cooperation among algorithms themselves. At the same time, a debate has emerged about

whether the replacement of humans by machines in oligopolistic markets could encourage

collusion and thereby reduce competition. This debate is not yet settled. For example, the

German Monopolkommission, a publicly funded think tank advising policymakers, expressed

in its main report of 2018 that there are many obstacles to coordination and communication

among machines and humans. Similarly, researchers such as Kühn and Tadelis (2018) and

Schwalbe (2018) are among the less concerned, demonstrating that it remains difficult to

build up collusion in most real world environments. However, others such as or Crandall

et al. (2018), Calvano et al. (2020), Klein (2021) or Normann and Sternberg (2023) have

shown in their more specific contexts that increasingly sophisticated machines indeed can

learn to cooperate in experimental settings.

Our current project aims to contribute to this debate by focusing on the leading question: Un-

der which conditions do machines and humans cooperate with each other? We address this

question within the framework of the two-player infinitely repeated discounted Prisoner’s

Dilemma as a simple and fundamental setting that is omnipresent in the social sciences and

beyond. This setting is well-suited for our study since it has been the subject of extensive

research, allowing us to compare our novel observations with decades of experimental evi-

dence of human-human interactions (see, e.g., literature reviews by Dal Bó and Fréchette;

2018; Mengel; 2018). Additionally, for the repeated discounted Prisoner’s Dilemma paradigm,

we can build on recent theories which proposed an equilibrium selection criterion based on

strategic risk that has been validated in experimental labs (Blonski et al.; 2011; Blonski and

Spagnolo; 2015). This δ∗−criterion, as we will refer to it, predicts a substantial increase of

cooperation rates among humans when the continuation probability δ of the game surpasses

a critical threshold δ∗, which depends on all exogenous payoff parameters of the Prisoner’s

Dilemma. In contrast to many other projects, we explicitly allow interaction between humans
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and machines, rather than limiting our analysis to human-human or machine-machine inter-

actions. Our treatment variations focus on opponent type (human vs. machine) and behavior

(objective and actions), which is central to our investigation of how machine opponents affect

human cooperation. In one group, subjects play against other humans (Human treatments).

In another, they engage with a human-behavior-mimicking algorithm (Imitator treatments),

trained using data from the Human treatments. A third group faces an algorithm designed

to maximize its own payoffs (Optimizer treatments). These three treatments help us disen-

tangle the different factors influencing cooperation behavior: the opponent’s type (human

vs. machine) and the behavior of the algorithm (human-like vs. profit-maximizing). Deter-

mining whether changes in cooperation behavior among subjects are due to the altered type

of opponent or the change in the opponent’s behavior sets our study apart from previous

experiments where humans play against computer players (see literature reviews by March;

2021; Chugunova and Sele; 2022).

What do we find? We considered three different continuation probabilities, which predict

minimal and maximal cooperation levels, based on equilibrium selection theory. The first set

of results focuses on human cooperation across opponent types. As expected, we observed

a clear increase in cooperation rates from the low to the medium to the high continuation

probability. Yet, a significant proportion of human participants still turned out to cooperate

with each other under the medium continuation probability and even under the low contin-

uation probability.1 When human opponents are replaced by two types of algorithms – a

human-imitator algorithm and a profit-maximizing algorithm – a distinct three-stage pattern

emerges across all three continuation probabilities. Regardless of the continuation probabil-

ity, participants exhibit statistically significantly higher levels of cooperation when faced with

human opponents compared to their algorithmic counterparts that mimic human behavior.

Furthermore, our evidence reveals even lower cooperation rates in Optimizer treatments. The

second of results concerns the δ∗−selection criterion, which predicts a discontinuous increase

1These cooperation rates for the low and medium δ were higher compared to various former experiments,

including the original experiments reported in Blonski et al. (2011). Possible explanations for this could be

that previous experiments were conducted in university labs where almost all participants are students and

experimenters have control over subjects’ information and communication. Our experiments, however, were

conducted on the Prolific platform, where the participant pool likely receives less formal training compared

to university students but may be more representative of society at large. In addition, available information

and communication is more messy but may be more realistic.
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in cooperation rates only once the continuation probability δ surpasses the threshold δ∗. We

propose a two-dimensional measure to assess its predictability. First, the criterion suggests

that the difference in initial cooperation remains unchanged when the parameters remain on

the same side of the δ∗−threshold. Second, it predicts that the difference in initial cooper-

ation is maximal once the parameters exceed the δ∗−threshold. It turns out that in both

dimensions, predictability of equilibrium selection theory increases if humans are replaced by

profit maximizing algorithms. It is less surprising that human players who face an opponent

that consistently initiates cooperation or defection at some point recognize that mirroring

this behavior benefits them. However, what we did not expect was a 100%-alignment for

initial cooperation of the profit-maximizing algorithm with the theoretical threshold. This

reinforcement learning algorithm was trained against the human imitator algorithm that be-

haved just as erratically as the human participants. Nevertheless it quickly learned that the

most effective way to maximize profits was to initiate cooperation precisely as predicted by

the δ∗−criterion. This result is in itself interesting, as neither the reinforcement learner nor

the human participants were informed about equilibrium selection theory.

To summarize, our findings offer new insights into the conditions under which machines and

humans cooperate in the infinitely repeated Prisoner’s Dilemma. Specifically, we find that

human cooperation rates react to both, the nature of the opponent (human vs. machine)

and its objective (imitate humans or maximize profits). Further, the predictive power of

the δ∗−criterion, based on strategic risk, becomes stronger when a human plays against a

machine instead of another human. It becomes particularly strong if the algorithm is designed

to learn how to maximize profits against humans, as many real-world algorithms are. The

prediction is nearly 100% accurate when two profit-maximizing algorithms play against each

other in simulations. Profit-maximizing algorithms figure out the same cooperation criterion

as abstract game theory does, but through an entirely different approach: processing data

from human populations. One way to interpret these observations is that the introduction

of algorithms into the erratic realm of humans increases predictability for cooperation and

collusion. Notably, this does not imply that the introduction of algorithms generally decreases

or increases cooperation. It depends strongly on the degree of algorithmic integration and

the parameters of the strategic setting.
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2 Experimental Design

To investigate the impact of machine opponents on human cooperative behavior, we con-

ducted a between-subjects empirical study using an online experiment based on the infinitely

repeated discounted Prisoner’s Dilemma. The experiment was pre-registered prior to ex-

ecution.2 In implementing the experiment on an infinitely repeated discounted Prisoner’s

Dilemma, we built on the standard approach proposed by Roth and Murnighan (1978),

wherein the game terminates with a probability of 1 − δ after each stage game. For a

risk neutral player the continuation probability δ is equivalent to the discount factor of the

player. Each subject engages in a total of 10 runs of the repeated game (“supergames”), with

a stranger matching between two subsequent supergames.

2.1 Opponent Type and Behavior

Our main treatment variation, namely opponent type or nature – i.e., human vs. machine –

and behavior – i.e., objective and chosen actions – is central to our key question regarding

the effects of machine opponents on human cooperation behavior and sets us apart from

previously conducted experiments involving infinitely repeated Prisoner’s Dilemmas. In our

between-subjects experimental design, subjects were assigned to one of three distinct treat-

ment groups, each differing in the type and behavior of their opponent. One group of sub-

jects plays against other subjects within the group (Human treatments). In another group,

subjects engage with a human behavior-mimicking algorithm (Imitator treatments), trained

using data from the Human treatments. In a third group, subjects face off against an algo-

rithm designed to maximize its own supergame payoff. This algorithm has been trained to

play against the human-behavior-mimicking algorithm (Optimizer treatments). Participants

were explicitly informed about the type of opponent they would face prior to the start of the

experiment. This included whether the opponent was another human, a human-behavior-

mimicking algorithm, or a profit-maximizing algorithm. After each stage game, participants

received feedback on their opponent’s decisions and rewards from the ongoing game.

These three treatments allow us to identify the different channels that influence subjects’

cooperation behavior. In the Imitator treatments, the type of opponent player differs from

2AsPredicted #130373, https://aspredicted.org/9WB YZR
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that in the Human treatments, while the behavior of the (now machine) opponent is designed

to match human play as closely as possible. In the Optimizer treatments, the opponent

player’s type remains the same as in the Imitator treatments (both are algorithms), but the

algorithm’s behavior shifts to profit maximization. Through these three treatments, we can

ascertain whether altered cooperation behavior among subjects is attributable to the changed

type of the opponent player or the change in the opponent player’s behavior.3

The two types of algorithmic players, the human imitator and the self-interested optimizer,

are implemented generically, aiming for the fewest model assumptions possible. The human

behavior-mimicking algorithm is model-free and replicates the actions played in the Human

treatment. At the beginning of a supergame, a human player from the Human treatment (with

the same continuation probability) is drawn at random, and her actions in the experiment

are used to sample actions of the imitator for the entire supergame. In this way, individual

idiosyncrasies of human players can be reflected in the imitator algorithm. In every stage game

of the supergame, only actions of the human player in comparable situations are considered.

If the human has faced the same history of actions in the supergame up to this stage game

as the imitator, only the actions played by the human after this history are used to sample

the next action of the imitator. If the human has not faced the same history, only a partial

history is considered. In the rare case of no overlap in action histories of human player and

imitator, action data from other humans of the Human treatment is used to sample the next

action of the imitator.

The self-interested optimizer is implemented as a standard reinforcement learning algorithm

(Sutton; 1988; Rummery and Niranjan; 1994; Sutton and Barto; 1998). In contrast to the

imitator, the reinforcement learner must be based on a model so that its parameters can

be determined during the learning process. To avoid imposing assumptions and restrictions,

we have considered a vast set of possible models and have chosen the best model for our

use case – in the sense that the resulting algorithm’s objective, namely maximizing its own

payoff against human imitators, is realized best. The final model features 17 states, enabling

the algorithm to base its actions on the most relevant parts of the history of play in the

3The money earned by the algorithmic players was not paid out but remained in the experimenters’ budget.

The instructions did not mention what happened with the algorithm’s earnings, which participants usually

understand as the money not being paid to any human entity (von Schenk et al.; 2023).
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supergame. Specifically, it considers the actions taken by both players in the previous period

(4 possibilities), the actions in the very first period (4 possibilities), and includes a distinct

state for the initial period of the supergame. Our result that the previous as well as the

initial period matter the most is consistent with the literature on the Repeated Prisoner’s

Dilemma, see for example Breitmoser (2015), Dal Bó and Fréchette (2019) and Fudenberg and

Karreskog Rehbinder (2024). Detailed technical specifications of the algorithm in Imitator

and Optimizer treatments can be found in Appendix A.

2.2 Parametrization of the Repeated Prisoner’s Dilemma

In Blonski and Spagnolo (2015) and Blonski et al. (2011), it has been demonstrated both

theoretically and experimentally that there exists a critical parameter range for the repeated

discounted Prisoner’s Dilemma in which the cooperation rates of players change significantly.

In our exploration of cooperation behaviors influenced by human and machine opponents,

we build upon their equilibrium selection criterion, specifically the δ∗−criterion, when choos-

ing our parametrization. In the following, we briefly revisit the corresponding equilibrium

selection theory.

Blonski and Spagnolo (2015) and Blonski et al. (2011) build upon the work of Harsanyi and

Selten (1988), hereafter referred to as HS. Blonski and Spagnolo (2015) showed that the risk

dominance concept of HS for simple 2× 2−games is applicable in a consistent manner to the

infinitely repeated discounted Prisoner’s Dilemma. They formulated an equilibrium selection

criterion based on HS’s 2 × 2−games risk dominance. Blonski et al. (2011) formulated ax-

ioms building on HS’s axiomatic foundation of risk dominance for 2× 2−games and adapted

them to the dynamic nature of the infinitely repeated discounted Prisoner’s Dilemma. Both

approaches identify the same δ∗−criterion. By conducting experiments across the relevant

parameter range, Blonski et al. (2011) demonstrated that the δ∗−criterion predicts coop-

eration of players in the lab with high accuracy. This criterion performs particularly well

compared to the classical criterion δ, which assumes that players will always cooperate once

the cooperation is supported by an equilibrium.

To be more precise, consider the infinitely repeated discounted repetition of the normalized,

symmetric Prisoner’s Dilemma stage game characterized only by the three parameters g, l, δ,

interpreted as gain g > 0, loss l > 0 and continuation probability or discount factor δ ∈ (0, 1):
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cooperate defect

cooperate 1 , 1 −l , 1 + g

defect 1 + g , −l 0 , 0

The inequality

δ ≥ δ =
g

g + 1
.

defines the lower bound on players’ patience to support equilibria with cooperative actions

on its outcome path. In many applications, the size of the interval [δ, 1] with its lower bound

δ = g
g+1 has been interpreted and is still used as a criterion for how well players can cooperate.

This is why we call δ the “classical” criterion. One possible justification for this interpretation

is to consider Pareto dominance as the most relevant equilibrium selection criterion, instead

of risk dominance. When both cooperative and non-cooperative equilibria are present, the

indefinitely defective outcome is Pareto-dominated by the indefinitely cooperative path, given

1
1−δ > 0. However, an obvious deficiency of the classical criterion δ = g

g+1 is that it does

not depend on the loss l suffered by the player who cooperates alone, usually referred to

as sucker’s payoff. Hence, using the classical criterion δ, the strategic risk of picking any

cooperative equilibrium can get arbitrarily large for sufficiently large loss l.

The δ∗−criterion

δ ≥ δ∗ =
g + l

1 + g + l
> δ =

g

g + 1

predicts cooperation if δ > δ∗ and addresses the latter problem. There are two different

theoretical foundations for it, both of which refer to strategic risk which in this parsimonious

3-parameter version of the model can simply be quantified by the loss parameter l. Equally

important in our context is that δ∗ = g+l
1+g+l identifies the critical parameter range where a

significant jump in cooperation rates is expected. If equilibrium selection based on strategic

risk has any relevance for real-world players’ tendency to cooperate, they should cooperate

much more once δ ≥ δ∗. The experimental evidence in Blonski et al. (2011) clearly falsified

the classical criterion δ and its comparative statics, which has been used for decades and still

persists in the applied community. Beyond that, it supported the δ∗−criterion. Moreover,
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it was also consistent with variations in cooperation rates observed in previous studies and

led to follow-up projects such as Breitmoser (2015) and Fudenberg and Karreskog Rehbinder

(2024).

For each of the three treatments with a different opponent (Human, Imitator and Opti-

mizer), we selected different continuation probabilities δ that lie both above and below the

δ∗−criterion. The payoffs for the stage game in our experiment remain constant and consis-

tent across all treatments, as detailed in Figure 1.

Player 1

Player 2

C D

C 90, 90 0, 120

D 120, 0 40, 40
Player 1

Player 2

C D

C 1, 1 −4/5, 8/5

D 8/5,−4/5 0, 0

Figure 1: Stage Game Payoffs

Notes: The left figure displays the payoffs of the stage game in Experimental Currency Units (ECU), where

£1=1000 ECU. The right figure displays the payoffs in normalized form.

The payoffs outlined in Figure 1 yield δ∗ = 7/12 ≈ 0.583. The “classical” criterion is δ =

0.375 for these payoffs. We considered three different continuation probabilities: δ1 = 0.85,

δ2 = 0.55, and δ3 = 0.4. In treatments with δ1, cooperation is supported as an equilibrium by

δ∗−selection criterion, whereas for δ2 and δ3, it is not. The selection of these three different

δ values encompasses the entire spectrum for which δ∗ makes predictions, namely δ ∈ [δ, 1],

and encompasses all critical values within this spectrum. Specifically, δ1 significantly exceeds

the critical value of the δ∗−selection criterion. In contrast, δ2 is close to the critical value

δ∗, while δ3 is close to the “classical” criterion, δ. Table B.1 in the Appendix provides an

overview of the different treatments and the number of participants.4

4Contrary to our pre-registration, we implemented only one instead of two δ values above δ∗ in the exper-

iment. Nevertheless, the chosen δ values still cover a substantial portion of the relevant spectrum for which

δ∗ makes predictions. Moreover, the number of independent observations per δ and per type of the opponent,

approximately 150 (i.e., 300 observations for each Human treatment), aligns with the planned number in the

pre-registration.
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2.3 Experimental Procedures

After receiving instructions for the experiment, participants were tasked with correctly an-

swering a series of comprehension questions related to stage game payoffs and continuation

probability. Individuals who failed to answer these questions correctly on three separate

occasions were excluded from further participation in the experiment. Upon completion of

all supergames, the subjects’ beliefs regarding the type and strategy of their opponents were

obtained through an incentivized elicitation.

The experiment was conducted online via Prolific with 1,847 participants between Septem-

ber 2023 and January 2024. For implementation, oTree by Chen et al. (2016) was utilized

and hosted on Heroku servers. Subjects took between 15 and 25 minutes to complete the

experiment, depending on the specific δ and opponent type of the treatment. On average,

subjects received payments totaling £4.70, inclusive of a base payment of £2.50. Instructions

and comprehension questions for the experiment can be found in Appendix D.

3 Results

Our main focus lies on the average cooperation rates in the first round of each supergame.

Since we did not include trial rounds after the instructions, we exclude the first three of the

ten supergames each participant played if not mentioned otherwise (see Blonski et al. (2011)

who also proceeded in that way). Besides initial cooperation rates, we also report overall

cooperation rates in Table B.2 in the appendix, which show qualitatively the same pattern.

3.1 Cooperation Across Opponent Type

When comparing the rates of initial human cooperation between different opponent types (see

Figure 2), a distinct three-stage pattern across all three δ values emerges. Regardless of

the continuation probability, participants exhibit statistically significantly higher levels of

cooperation when facing human opponents compared to algorithmic counterparts imitating

human behavior (p < 0.001 for δ ∈ {0.4, 0.55}, and p = 0.004 for δ = 0.85, Wald tests).

Additionally, our analysis reveals even lower cooperation rates in the Optimizer treatment

for continuation probabilities below δ∗ (all p < 0.001, Wald tests).
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δ − δ∗

Initial Cooperation

−.2 −.1 .1 .2 .30

.2

.4

.6

.8

1 Theory Prediction

Legend

Human vs. Human

Human vs. Imitator

Human vs. Optimizer

Imitator algorithm

Optimizer algorithm

Figure 2: Initial Cooperation Rates

Notes: The figure displays the initial cooperation rates by continuation probability and by treatments varying

opponent type and behavior.

Result 1 (Initial cooperation across opponent types) For all δ, participants cooper-

ate significantly less as algorithmic integration rises.

To our knowledge, our study stands out for its stringent differentiation between variations

in willingness to cooperate in human-machine interactions stemming from differences in the

machine’s choices versus differences in the machine’s inherent nature. In summary, partic-

ipants cooperate significantly more with other humans than with an algorithm imitating

human choices (for all δ). Cooperation decreases further when they interact with a payoff-

maximizing reinforcement learning algorithm (if δ < δ∗). Thus, our findings suggest that

both the type and strategy of the opponent play crucial roles in shaping initial cooperation

rates within the repeated Prisoner’s Dilemma framework.

In the treatments with algorithmic opponents, we can observe the initial cooperation rates

of the machine players, as depicted in Figure 2 and detailed in Appendix A. The human imi-

tator plays a completely mixed strategy. Its probabilities of cooperation feature considerable

heterogeneity across supergames, reflecting the heterogeneity in cooperation across human
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players. Both on average and on the individual level, the cooperation probabilities of the

imitator closely follow those of the participants in the Human treatments – by design (minor

deviations due to randomness in simulations). In contrast, the reinforcement learner adopts

a corner solution, adhering precisely to the the δ∗−criterion by never cooperating for the two

lower δ values and consistently cooperating for the high continuation probability of 0.85. This

behavior is intriguing, particularly considering that the reinforcement learner was trained to

optimize its own payoffs against our participant sample (represented by the human imitator

algorithm) which exhibits overall high cooperation rates. Nevertheless, it is noteworthy that

the reinforcement learner consistently refrains from cooperation when δ < δ∗, even if the

opponent chooses to cooperate.

Result 2 (Algorithmic cooperation) A reinforcement learner algorithm that seeks to

maximize its own payoffs plays the corner solution according to δ∗−selection criterion and

cooperates if and only if δ > δ∗.

Despite the full cooperation of the reinforcement learning algorithm for the high continua-

tion probability δ = 0.85, human participants cooperate significantly less against this type

of opponent than when playing against another human (cf. Result 1). There are two op-

posing mechanisms in this experimental condition: the cooperative strategy of the opponent,

which should encourage cooperation by the participants, and its algorithmic nature, which

discourages cooperation, as it can be seen in the comparison between the Human and Imita-

tor treatments. The low human cooperation rate indicates that the latter mechanism exceeds

the former.

In the experiment, each participant engages in a total of 10 supergames, with a stranger

matching implemented between two subsequent supergames. Apart from examining the ag-

gregated initial cooperation rates, we proceed to analyze the evolution of these rates across

supergames for human participants (see Figure 3). Although initial cooperation rates in the

first supergame exceed 50% across all opponent types, sustained high cooperation rates are

only observed for the highest continuation probability, δ = 0.85. Conversely, for the two

δ values below δ∗, initial cooperation rates gradually decline over time irrespective of the

opponent, indicating a convergence towards the δ∗−criterion, particularly noticeable in the

algorithm treatments after numerous supergames. This decline is most pronounced when
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Figure 3: Evolution of Initial Cooperation

Notes: The figure displays the evolution of participants’ initial cooperation rates for all types of the opponent

across supergames, separately by the continuation probability δ. The dashed vertical line separates the

excluded first three periods from the main dataset used for the analyses.

participants play against the optimized reinforcement learning algorithm, where cooperation

for δ < δ∗ nearly diminishes to zero by the 10th supergame. As reported in Result 2, the

reinforcement learning algorithm never cooperates for δ < δ∗. Consequently, human partic-

ipants show a sharp decrease in cooperation between the first and the second supergame.

Afterwards, though they require some time, they eventually converge to the algorithm’s be-

havior in the long run in the Optimizer treatment. The visual impression is supported by

regression results reported in Table B.3 in the appendix. The initial differences between the

three opponent types further increase by time trends that are more negative in the Imitator

treatment (p = 0.06) and even stronger in the Optimizer treatment (p < 0.005).

Result 3 (Evolution of human cooperation) The gap in cooperation rates across oppo-

nents widens over time. That is, participants need several supergames to adjust their strategy

to the type of opponent.

3.2 Predictability of the δ∗−Selection Criterion

The δ∗−selection criterion predicts a discontinuous increase in cooperation rates only once the

continuation probability δ surpasses the threshold δ∗. To measure the fit of observed human

behavior for the different types of opponent, we define our measure of δ∗−predictability in two

dimensions: first, the difference in initial cooperation if δ < δ∗ (in our case δ ∈ {0.4, 0.55}),
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(1) (2) (3) (4)

Human Imitator Optimizer All

1{δ = 0.55} 0.118∗∗∗ 0.0429 -0.0226 0.118∗∗∗

(0.0329) (0.0369) (0.0181) (0.0329)

Imitator -0.152∗∗∗

(0.0329)

Optimizer -0.311∗∗∗

(0.0265)

Imit × 1{δ = 0.55} -0.0753

(0.0494)

Opt × 1{δ = 0.55} -0.141∗∗∗

(0.0375)

Constant 0.414∗∗∗ 0.262∗∗∗ 0.103∗∗∗ 0.414∗∗∗

(0.0231) (0.0234) (0.0131) (0.0231)

N 4300 2142 2198 8640

R2 0.014 0.002 0.002 0.122

(a) Comparisons δ = 0.40 vs. δ = 0.55.

(1) (2) (3) (4)

Human Imitator Optimizer All

1{δ > δ∗} 0.294∗∗∗ 0.370∗∗∗ 0.479∗∗∗ 0.294∗∗∗

(0.0273) (0.0379) (0.0368) (0.0273)

Imitator -0.189∗∗∗

(0.0248)

Optimizer -0.381∗∗∗

(0.0189)

Imit × 1{δ > δ∗} 0.0766

(0.0467)

Opt × 1{δ > δ∗} 0.185∗∗∗

(0.0458)

Constant 0.472∗∗∗ 0.283∗∗∗ 0.0914∗∗∗ 0.472∗∗∗

(0.0166) (0.0184) (0.00905) (0.0166)

N 6318 3192 3278 12788

R2 0.076 0.126 0.271 0.192

(b) Comparisons δ < δ∗ vs. δ > δ∗.

Table 1: δ∗−Predictability – Regressions

Notes: Panel (a) shows regression results of initial cooperation on an indicator for δ = 0.55, treatment

dummies, and interaction terms, and includes only observations with δ = 0.4, 0.55 < δ∗. Panel (b) shows

regression results of initial cooperation on an indicator for δ > δ∗, treatment dummies, and interaction terms,

and includes observations for all levels of δ. Standard errors in parentheses, clustered at the individual level.

∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

which is predicted to be 0; second, the difference in initial cooperation between δ = 0.85 > δ∗

and δ = 0.4, 0.55 < δ∗, which is predicted to equal 1.

When participants engage with a human opponent, we observe a significant increase in coop-

eration rates when δ exceeds δ∗ (see Figure 2 and column (1) of Table 1, panel (b)). Still, we

find deviations from behavior anticipated by the δ∗−selection criterion. Predictions based on

this criterion suggest negligible and indistinguishable cooperation for δ ∈ {0.4, 0.55}, given

their position below δ∗ = 0.5833. However, our observations reveal markedly more cooper-

ation than predicted by the δ∗−selection criterion for these lower continuation probabilities

(47.2% on average, see Table 1, panel (b)), and significant differences between δ = 0.4 and

δ = 0.55 (p < 0.001, see Table 1, panel (a)).

Yet, when participants engage with algorithmic opponents, we find closer alignment with

the δ∗−selection criterion. For the Imitator treatment, as reported in column (4) of Table 1,

panel (b), cooperation rates for δ < δ∗ are significantly closer to zero (p < 0.001). Further, the

difference in cooperation for δ > δ∗ vs. δ < δ∗ is larger compared to the Human treatment,
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though not significantly so (p = 0.101), and the difference for δ = 0.4 vs. δ = 0.55 mostly

disappears and becomes insignificant (p = 0.247, Table 1, panel (a)). The largest effect of

surpassing δ∗ can be observed in the Optimizer treatment. When participants play against

an algorithm that seeks to maximize its profits, they show on average an initial cooperation

rate below 10% whenever δ < δ∗. The second dimension of δ∗−predictability – the increase

in cooperation once δ > δ∗ – is significantly higher in the Optimizer treatment (0.479) than

in the Human treatment (difference of 0.185, p < 0.001) and than in the Imitator treatment

(difference of 0.109, p = 0.040, Wald test). Beyond that, as in the Imitator treatment, there

is no significant difference in cooperation between δ = 0.4 and δ = 0.55 (p = 0.212).

Consequently, we observe that human behavior increasingly aligns with the δ∗−equilibrium

selection criterion as the degree of algorithmic integration rises. When playing against another

human, participants show a high willingness to cooperate, even for continuation probabilities

δ < δ∗, and δ∗−predictability is rather poor with significant differences in cooperation below

δ∗ (0.118) and only a small increase when surpassing δ∗ (0.294). However, if the opponent is

replaced by an algorithm that imitates human choices, cooperation rates start to align more

closely with the predictions of the δ∗−criterion, though the improvements in δ∗−predictability

(to 0.0429 in the first dimension and to 0.370 in the second dimension) just miss significance

(p = 0.101 and p = 0.128, respectively) and we still observe initial cooperation in 28.3% of

cases for δ < δ∗. Finally, when participants engage with an algorithm trained to maximize

payoffs using self-learned strategies, their behavior shifts toward patterns of initial cooper-

ation similar to those predicted by the δ∗−selection criterion. In this scenario, cooperation

rates are low for δ < δ∗ (around 10%), and δ∗−predictability is significantly stronger com-

pared to human-human interactions (improvements to −0.0226 and to 0.479 with p < 0.001

in both dimensions).

Result 4 (δ∗−Predictability) Human behavior aligns significantly more strongly with the

δ∗−equilibrium selection criterion when interacting with a payoff-maximizing reinforcement

learning algorithm than when interacting with another human.

The nature of an experiment on repeated games does not allow for the observation of strate-

gies, but only of outcome paths, which can contain equilibrium or off-equilibrium behavior.
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δ

0.4 0.55 0.85

Human Payoff human 57.20 61.37 69.57

Imitator
Payoff human 59.89 64.52 66.31

Payoff algorithm 46.18 47.07 63.39

Optimizer
Payoff human 37.09 37.40 87.37

Payoff algorithm 47.19 45.20 56.12

Table 2: Average Payoffs

Notes: The table displays the average payoffs of humans and bots in all treatments and for all levels of δ.

As a robustness check on Results 1 and 4, we employ the two-step filtering procedure in Blon-

ski et al. (2011) to estimate initial cooperation in the subset of equilibrium outcome paths

in the data. Results are reported in Appendix C. The patterns of initial cooperation across

levels of δ and opponent type are qualitatively unaffected. In the Optimizer treatment, the

participants’ behavior gets even closer to the prediction by the δ∗−criterion, with negligible

cooperation in the first period below 4% whenever δ < δ∗.

3.3 Payoffs of Human and Algorithmic Players

As an exploratory, non-preregistered analysis, we consider the payoffs of human and algorith-

mic players and discuss under which conditions delegating decision authority to an algorithm

could be desirable in order to maximize payoffs. Table 2 reports average payoffs of human

and algorithmic players across all treatments and continuation probabilities. For δ < δ∗,

participants earned significantly less payoff against an optimizer algorithm (which acts fully

defectively, see Result 2) compared to the case of a human or imitator opponent (p < 0.001,

Wald tests). For δ > δ∗, however, human subjects profit from the cooperative nature of the

optimizer algorithm and achieve the highest payoffs across all conditions. Comparing the

outcome of human and algorithmic players in the Optimizer treatments, the latter achieve

higher payoffs for δ < δ∗ by exploiting the cooperation intentions of their human opponents

(p < 0.001, paired t-tests). Under the high continuation probability, the pattern switches and
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the human players outperform their algorithmic opponent in terms of payoffs (p < 0.001).

Result 5 (Payoffs) When playing against a reinforcement learner, delegating decisions to

this algorithm on average maximizes players’ payoffs if δ < δ∗; otherwise, making decisions

oneself is payoff-maximizing. When playing against humans, it is always payoff-maximizing

not to delegate and to decide on one’s own.

Imagine a population of human players, who can pick actions by themselves or delegate

their actions to a machine of their choice. Suppose these players are matched randomly

to play the infinitely repeated PD games under consideration. Result 5 suggests that a

monotone dynamic in this evolutionary-game-style thought experiment tends to converge to

either extreme where either (i) only humans or human-like algorithms, or (ii) only profit-

maximizing algorithms prevail. It depends very much on parameters, however, as the title of

this article emphasizes, which of the two cases realizes.

4 Conclusion

Our study provides a nuanced perspective on the conditions under which machines and

humans cooperate in the infinitely repeated Prisoner’s Dilemma, a foundational setting for

studying cooperation and collusion. By systematically varying opponent type (human vs.

machine) and algorithmic behavior (human-imitating vs. profit-maximizing), we demonstrate

that human cooperation rates depend significantly on both the nature and objectives of their

counterparts.

The introduction of equilibrium selection theory and strategic risk into infinitely repeated

games with its plethora of equilibria has enhanced the predictability of human cooperation.

Our current findings further support the potential usefulness of this decades-old theoretical

paradigm. A key insight is that the predictive power of equilibrium selection theory increases

when humans face machines, particularly when the machine’s objective is profit maximization.

When humans interact with these algorithms, they too become more predictable, provided

they can learn from the algorithms’ superior performance and emulate them in this context.

We conjecture that human attitudes toward technology will change over time and across
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cultures. However, we expect the influence of introducing algorithms on the predictability of

cooperation to be more likely to persist.

These findings contribute to the ongoing debate about algorithmic cooperation and com-

petition. While our results suggest that algorithms may enhance predictability in strategic

interactions, they also underscore the complexity of evaluating their broader implications.

The degree of algorithmic integration and the specific parameters of the strategic environ-

ment play a crucial role in determining whether cooperation is increased, reduced, or merely

transformed. Future research can build on this replicable experimental framework to explore

more complex settings, such as with more than two players, larger action spaces, and in-

complete information, further advancing our understanding of human-machine cooperation

in economic and social contexts.
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A Technical Details on Algorithmic Players

A.1 Human Imitator

The human imitator algorithm is designed to mimic the play in the Human treatment. At the

beginning of a supergame, a human player from Human treatment with the same discount

factor δ is drawn at random and the algorithm samples actions of this player throughout the

entire supergame. At each stage game, the history of actions in the supergame up to this

point is used by the algorithm to sample only from actions in comparable situations.

Suppose the human imitator algorithm plays a supergame and now has to choose an action

in round t with history Ht =
{
(a0, ā0), . . . (at−1, āt−1)

}
, where (at′ , āt′) denote the actions of

the algorithm and its opponent, respectively, in period t′.

1. If history Ht has occurred to the sampled human player during the experiment once

or multiple times, the algorithm samples an action out of all the actions taken by the

human player at history Ht. That is, if the individual cooperated, for example, in 3

out of 4 observations with history Ht, the human imitator algorithm cooperates with

75% probability.

2. If the full history Ht has not occurred to the sampled human player, but the memory-1

history (at−1, āt−1) has occurred, the algorithm samples an action out of all the actions

taken by the human player upon action profile (at−1, āt−1).

3. If the action profile (at−1, āt−1) has never occurred to the sampled human player during

the experiment, the algorithm samples an action out of all the actions taken by any

player in the experiment upon action profile (at−1, āt−1).

Figure A.1 illustrates the strategies employed by human imitators for different levels of dis-

counting δ. One can clearly see that defection is the action played most often – for all three

levels of discounting, but particularly for δ = 0.40 and δ = 0.55. For the largest continuation

probability δ = 0.85, mutual cooperation occurs significantly more often than for the other

two values of δ, translating into larger expected payoffs.
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Figure A.1: Simulation Results Human Imitator vs. Human Imitator

Notes: The figure displays the empirical frequencies of action profiles when play between human imitators is

simulated (1,000 times).

It is worthwhile to note that our implementation of the human imitator is model-free. Play

from the human experiments is replicated statistically, by randomly drawing action choices

of human subjects in comparable situations.

A.2 Optimized Reinforcement Learner

The optimized reinforcement learner algorithm is designed to maximize its own payoff when

playing against a human imitator. We have striven for the most general implementation with

minimal modeling assumptions. All relevant design choices have been made “objectively”,
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by evaluating all choices and choosing the one that best accomplishes the goal of maximizing

the algorithm’s payoffs against human imitators.

When designing an algorithmic player, there are two types of modeling choices: first, choices

concerning the richness of the strategies available to the algorithm and second, choices con-

cerning the statistical optimization method that evaluates each strategy. Design choices

concerning the richness of strategies (which corresponds to the specification of the “states” of

the game that actions can be conditioned on) have a major impact on the play employed by

the final algorithm and ultimately on its success in terms of payoff. As will be detailed in the

following, we have chosen the state space such that the resulting algorithmic player performs

best, without a priori assumptions. However, design choices concerning the statistical eval-

uation of strategies have no effect on the final algorithmic player – provided the statistical

optimization method arrives at a global optimum of the payoff maximization. To ensure that

our reinforcement learner arrives at a global optimum, we have run it with numerous start-

ing values as well as random shocks. All meta-parameters are chosen so that the algorithm

reliably arrives at the same optimum. Finally, in simulations against human imitators, we

have verified that the final optimizer algorithm indeed earns maximal payoffs.

Our optimized reinforcement learner is based on a standard Expected SARSA algorithm.

SARSA stands for State-Action-Reward-State-Action and describes the learning process of

the algorithm: Starting in a given state, the algorithm tries an action, receives the immediate

reward, finds itself in the next state, and evaluates the next action from there.

First, we need to define the state space. In case of a repeated Prisoner’s Dilemma, the state

space is a partition of the history of play. The optimized reinforcement learner can condition

its action choice on the state, that is, on certain parts of the history of play.

Choosing a state space too small can restrict the algorithm to suboptimal action choices.

Choosing the state space too large, on the other hand, can lead to identification problems

when some states rarely occur and to convergence issues when unimportant parameters dilute

the explanatory power of the model.

To select the optimal state space for the game at hand, the repeated prisoner’s dilemma,

we train the model with different state spaces up to size 65, let each trained model play

against the human imitator and go with the model that achieves the highest payoffs. The
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optimal state space for our dataset turns out to be of size 17, including the action profiles

of the previous period as well as the very first period of the supergame. This happens to

be perfectly in line with the literature on the Repeated Prisoner’s Dilemma, which has also

found that the actions played in the previous period as well as the very first actions in the

supergame provide the most information on subsequent actions (see, for example, Breitmoser

(2015) and Fudenberg and Karreskog Rehbinder (2024)). Thus the state space consists of

the following 17 states:

S =
{
0,

CC CC, CC CD, CC DC, CC DD

CDCC, CDCD, CDDC, CDDD

DC CC, DC CD, DC DC, DC DD

DDCC, DDCD, DDDC, DDDD
}

where 0 denotes the very first period while the four letters stand for the own action in the

initial period, the opponent’s action in the initial period, the own action in the previous

period and the opponent’s action in the previous period, respectively.

Expected SARSA is a popular version of Q-learning. In Q-learning, every action in every

state is assigned a Q-value. The Q-value Q(s, a) determines the probability of playing the

action a in the state s. During the learning process, Q-values are updated until convergence

is achieved. The evolution of Q-values (i.e. learning) over periods t is updated using the

following rule:

Q(st, at) ← (1− α) Q(st, at) + α
(
π(st, at) + δ IE

[
Q(st+1, at+1)

])
(A.1)

where α is a meta parameter governing the learning rate, π denotes game payoffs and δ is

the discount factor.

Mixed strategies σ(s, a), i.e. the probability of playing action a in state s (from action set

As), directly depend on Q-values and are given by the logit choice rule

σ(s, a) =
eγ Q(s,a)∑

a′∈As

eγ Q(s,a′)
(A.2)

where γ denotes the rationality parameter (γ = 0 is random play, γ → ∞ means always

playing the action with the highest Q-value).
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Training the algorithm requires that both the strategies and the Q-values converge. We start

the learning process with uniform Q-values, random play (γ = 0) for initial experimentation,

and high learning rate (α = 0.05). From there, the algorithm plays and updates Q-values

(and thus also strategies) repeatedly. After 100 supergames, γ is increased by 0.01 per

supergame so that action choices become less random and stabilize. After 1,000 supergames,

α is decreased at a rate of 0.005 per supergame so that the learning process converges.

(Strategies must stabilize more quickly than Q-values.)

After 1,000 supergames, the algorithm starts checking for convergence. In each period, it

compares the current strategies σt with the strategies σt−100 100 supergames ago. If the

maximum difference in the strategy vectors is smaller than 1e−6, the strategies are considered

converged.

Figure A.2 depicts the evolution of strategies (probabilities of cooperation in the 17 states)

as well as the Q-values of the 34 state-actions during the learning process of the reinforce-

ment learning algorithm. After quite some initial experimentation, strategies and Q-values

converge rather quickly – which is not surprising for this small game. In most states, optimal

probabilities of cooperation are zero. In some states, probabilities remain between zero and

one, indicating that actions the corresponding states do not have a large influence on final

payoffs. Remarkably, for δ = 0.85, a couple of cooperation probabilities converge to one,

meaning that cooperation is worthwhile in these cases.

Figure A.3 illustrates the strategies employed by the reinforcement learner algorithm when

playing against a human imitator algorithm as well as the corresponding outcomes, for dif-

ferent levels of discounting δ. Clearly, the reinforcement learner achieves higher payoffs than

the human imitator in Figure A.1. For δ = 0.40 and δ = 0.55, it mainly achieves this via

defection, translating into low payoffs for the human imitator opponent. For δ = 0.85, the

reinforcement learner achieves higher payoffs than for the other two values of δ, but mainly

via increased cooperation, translating into even larger payoffs for the human imitator in this

case.

24



Figure A.2: Convergence of Optimized Reinforcement Learner

Notes: The figure displays the evolution of strategies as well as the corresponding Q-values during the learning

process of the reinforcement learner algorithm.
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Figure A.3: Simulation Results Reinforcement Learner vs. Human Imitator

Notes: The figure displays the empirical frequencies of action profiles when play between reinforcement learners

and human imitators is simulated (1,000 times).
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B Additional Tables

Continuation Probability (δ) Opponent Type

Human Imitator Optimal RL

0.40 316 156 154

0.55 312 150 160

0.85 294 150 155

Table B.1: Number of Participants

Notes: The table displays the number of participants, categorized by continuation probability and differenti-

ated by the type and behavior of the opponent.

(1) (2) (3)

δ Human Imitator Optimizer

0.4 41.37% 26.19% 10.30%

0.55 53.19% 30.48% 8.04%

0.85 76.61% 65.33% 57.04%

(a) Initial Cooperation.

(1) (2) (3)

δ Human Imitator Optimizer

0.4 37.20% 23.98% 9.47%

0.55 45.91% 28.12% 6.50%

0.85 60.36% 50.21% 53.70%

(b) Overall Cooperation.

Table B.2: Human Cooperation Rates

Notes: The table reports average cooperation rates of human participants in the first period of each supergame

(panel (a)) and across all rounds (panel (b)). The numbers always exclude the first three supergames.
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(1) (2) (3) (4)

Human Imitator Optimizer All

Supergame -0.0182∗∗∗ -0.0243∗∗∗ -0.0339∗∗∗ -0.0182∗∗∗

(0.00179) (0.00271) (0.00205) (0.00179)

Imitator -0.117∗∗∗

(0.0246)

Optimizer -0.201∗∗∗

(0.0220)

Imitator × Supergame -0.00611∗

(0.00324)

Optimizer × Supergame -0.0157∗∗∗

(0.00272)

Constant 0.697∗∗∗ 0.579∗∗∗ 0.496∗∗∗ 0.697∗∗∗

(0.0139) (0.0203) (0.0171) (0.0139)

N 9152 4560 4685 18397

R2 0.011 0.020 0.044 0.078

Table B.3: Evolution of Initial Cooperation – Regressions

Notes: Regression results of initial cooperation on the supergame, treatment dummies, and interaction terms.

Standard errors in parentheses, clustered at the individual level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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π1

π2

(120,0)

(0,120)

(40,40)

π(1) = (40, 3203 )

π(2) = (90, 90)

π(3) = (3203 , 40)

Figure C.1: Payoff Space

Notes: The figure shows the payoff space of the game. The marked area is the equilibrium payoff space and

the marked points represent the vertices of the Pareto frontier.

C Robustness Check: Equilibrium Filtering

We follow the procedure by Blonski et al. (2011) to categorize the observed outcome paths

in the repeated games into either equilibrium or non-equilibrium paths by employing their

two-step filtering. First, we remove all paths that are not individually rational and violate

T∑
t=1

δt−1ui(x1t, x2t) + δTπi ≥
d

1− δ
(C.1)

for i = 1, 2. Hereby, T denotes the length of the supergame, and the continuation payoffs πi

are elements of the equilibrium payoff space. In particular, we check whether condition (C.1)

holds for at least one of the payoffs (π1, π2) ∈ {π(1), π(2), π(3)} forming the Pareto frontier of

the equilibrium payoff space depicted in Figure C.1.

Second, we check a set of non-deviation conditions comparing the observed path with con-

tinued cooperation and deviations at any point in time t ≤ T with continued defection:

T∑
τ=1

δτ−1ui(x1τ , x2τ ) + δT
c

1− δ
≥

t−1∑
τ=1

δτ−1ui(x1τ , x2τ ) + δt−1ui(x̃i,t, x−i,t) + δt
d

1− δ

(C.2)
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(1) (2) (3)

δ All Filter 1 Filter 2

0.4 41.37% 40.25% 36.12%

Human 0.55 53.19% 54.22% 53.11%

0.85 76.61% 77.67% 77.89%

0.4 26.19% 26.14% 22.94%

Imitator 0.55 30.48% 32.77% 31.31%

0.85 65.33% 66.34% 66.35%

0.4 10.30% 6.52% 0.00%

Optimizer 0.55 8.04% 5.12% 3.91%

0.85 57.04% 63.64% 65.52%

Table C.1: Initial Cooperation Rates Across Opponents, Continuation Probabilities, and with

Equilibrium Filtering

Notes: Column (1) includes all outcome paths, column (2) only those remaining after applying filter 1 (see

(C.1)), column (3) only those remaining after applying filter 2 (see (C.2)).

for i = 1, 2 and t ∈ {1, . . . , T}. Hereby, x̃i,t denotes the deviating action of player i in period

t (i.e., C instead of D or D instead of C).

From the in total 13,821 outcome paths we collected across all opponents and all levels of δ

(always excluding the first three supergames), 12,351 or 89.36% remain after filter 1 (89.38%

for Human, 86.73% for Imitator, 91.91% for Optimizer) and 10,428 or 75.45% after filter 2

(74.17% for Human, 67.81% for Imitator, 84.14% for Optimizer).

Table C.1 reports initial cooperation rates across opponents and levels of δ for the whole

sample, for paths remaining after filter 1, and for paths remaining after filter 2. For the highest

continuation probability δ = 0.85 > δ∗, there are negligible changes in the estimated initial

cooperation rate. For the two levels of δ below the threshold δ∗ for which the δ∗−criterion

predicts no cooperation, there is a decrease in the average likelihood of cooperating in the first

round of the supergame for all opponent types. In particular, in the Optimizer treatment

we observe (hardly) any initial cooperation after filter 2 (none for δ = 0.4 and 3.91% for

δ = 0.55). As reported in panel (a) of Table C.2, the first dimension of δ∗−predictability
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(1) (2) (3)

All Filter 1 Filter 2

Human 0.118 0.140 0.170

Imitator 0.0429 0.0662 0.0837

Optimizer −0.0226 −0.0140 0.0391

(a) Comparisons δ = 0.40 vs. δ = 0.55.

(1) (2) (3)

All Filter 1 Filter 2

Human 0.294 0.305 0.324

Imitator 0.370 0.369 0.385

Optimizer 0.479 0.578 0.635

(b) Comparisons δ < δ∗ vs. δ > δ∗.

Table C.2: δ∗−Predictability Across Opponents and with Equilibrium Filtering

Notes: In both panels, column (1) includes all outcome paths (cf. Table 1), column (2) only those remaining

after applying filter 1 (see (C.1)), column (3) only those remaining after applying filter 2 (see (C.2)).

hardly changes when applying the filtering. The second dimension remains mostly unaltered

for human and human imitator opponents, while it strongly and significantly increases in the

Optimizer treatment (all p < 0.001). Thus, through equilibrium filtering, the behavior of the

human participants becomes even closer to the predicted strategies by the δ∗−criterion with

defection for δ < δ∗ and cooperation for δ > δ∗.
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Instructions 

Introduction 

In this study, you will be randomly and anonymously paired with another player. 
Each of you simultaneously and privately decides whether you want to choose Action A or Action B. 
Your payoffs will be determined by the choices of both, as illustrated below. 

In each cell, the amount to the left is the payoff for you and to the right for the other player. 

  The other player 

  Action A Action B 

You 
Action A 90 points, 90 points 120 points, 0 points 

Action B 120 points, 0 points 40 points, 40 points 

 

 

 

Rounds and Payoffs 

You will play the described game repeatedly over several rounds. 
The number of rounds you play is random. 
Before every round, the computer determines randomly whether the game continues or ends. 
You will learn the probability with which the game continues (continuation probability) before the first 
round. 
It will remain the same for your whole experiment. 
The higher the continuation probability, the higher the expected number of rounds you will play. 

Your payoffs equal the sum of points you earn across all rounds. 
Hereby, 100 points correspond to £0.10. 
On top of your earnings from the rounds, you receive a base pay of £2.50. 

 

 

Try it out! 

Select one action for you and one for the other player, i.e. for both players. 
You will then learn what would happen in such a scenario. 

 



Suppose that you chose Action A.  
Suppose that the other player chose Action A.  
In this case, you would get 90 points, the other player would get 90 points. 

 

 

Comprehension Questions [correct answers marked with filled square] 

Please answer the following comprehension questions.  
You need to answer all of them correctly.  
You have 3 out of 3 attempts left to answer all correctly.  

Do you play the game for a fixed or random number of rounds?  
□ The number of rounds is fixed. 
■ The number of rounds is random. 

Do you play the same game repeatedly or does the game change between rounds?  
■ The game remains the same. 
□ The game changes between rounds. 

If the continuation probability increases, how does the expected number of rounds you play change?  
■ The expected number of rounds increases. 
□ The expected number of rounds decreases. 
□ There is no effect on the expected number of rounds. 

Is the probability that after the first round the second starts smaller / equal / larger than the probability 
that after the fifth round the sixth starts?  

□ Smaller 
■ Equal 
□ Larger  

Is the expected number of rounds that the game will keep going smaller / equal / larger after the first 
round than after the fifth round?  

□ Smaller 
■ Equal 
□ Larger 

 

 

Comprehension Questions 

Please answer the following comprehension questions using the game table below.  
You need to answer all of them correctly.  
Fill out the entry fields and click on the    button in the respective line to calculate the result.  
You have 3 out of 3 attempts left to answer all correctly. 

 
 

Your action: Action A 
The other players' action: Action A 
Your payoff: 90 points 
The other players' action: 90 points 

  



Scenario 1  

Consider the following scenario.  
The game lasts 7 more rounds. [δ=0.4, 0.55: 2 rounds; δ=0.85: 7 rounds] 
In the current round, you and the other player both choose Action A.  
In the future 6 rounds, you and the other player continue to choose Action A.  
What is your total payoff?  

Payoff in current round  Payoff in future rounds  Remaining future rounds  Total payoff 

90 points + 90 points × 6  630 points 
 
 

Scenario 2  

Consider the following scenario.  
The game lasts 7 more rounds. [δ=0.4, 0.55: 2 rounds; δ=0.85: 7 rounds] 
In the current round, you choose Action A and the other player chooses Action B.  
In the future 6 rounds, you and the other player both always choose Action B.  
What is your total payoff?  

Payoff in current round  Payoff in future rounds  Remaining future rounds  Total payoff 

0 points + 40 points × 6  240 points 
 
  

Scenario 3  

Consider the following scenario.  
The game lasts 7 more rounds. [δ=0.4, 0.55: 2 rounds; δ=0.85: 7 rounds] 
In the current round, you choose Action B and the other player chooses Action A.  
In the future 6 rounds, you and the other player both always choose Action B.  
What is your total payoff?  

Payoff in current round  Payoff in future rounds  Remaining future rounds  Total payoff 

120 points + 40 points × 6  360 points 
 

 

 

Assessment 1 

The main part of the experiment is now over. 
Before you finish, we ask you a few questions. 

Which of the following goals describes best your chosen actions in the games? 

Ο Maximizing own payoff 

Ο Maximizing cooperation 

Ο Achieve equal payoffs 

Ο Maximizing the sum of payoffs 

Ο Minimizing your opponent's payoff 



 
By answering the following question, you can earn an additional bonus. 
We compare your answer the answer of your opponents in the previous games. 
If your answer matches the majority of your opponents' answers, you will earn a bonus of 200 points. 

Which of the following goals do you think describes best the majority of your opponents' chosen 
actions in the game? 

Ο Maximizing own payoff 

Ο Maximizing cooperation 

Ο Achieve equal payoffs 

Ο Maximizing the sum of payoffs 

Ο Minimizing your payoff 

 

 

Assessment 2 

Before showing you the final results, we ask you another question. 
By answering this questions, you can earn an additional bonus. 
If your answer is correct, you will earn a bonus of 200 points. 

Against what type of opponent do you think you have played? 

Ο Another human participant 

Ο An intelligent algorithmic player 

Ο A randomly playing bot 

 

 

Survey 

Please answer the following questions. 

What is your age? 

 

What is your gender? 

Ο Male 

Ο Female 

Ο Other 

What is your highest educational degree? 

Ο No degree 

Ο High School 

Ο Bachelor 

Ο Master 

Ο PhD 

 



If you go/went to university, what is/was your major? 

Ο Not applicable 

Ο Economics 

Ο Law 

Ο Psychology 

Ο Political sciences 

Ο Medicine 

Ο Natural sciences 

Ο Mathematics 

Ο Engineering 

Ο Other social sciences 

Ο Other 

How familiar are you with artificial intelligence and machine learning? 

Ο Not familiar at all 

Ο Rather not familiar 

Ο Neutral 

Ο A little familiar 

Ο Very familiar 

How much confidence do you have in new technologies like artificial intelligence? 

Ο No confidence at all 

Ο Rather no confidence 

Ο Neutral 

Ο A little confidence 

Ο Strong confidence 

Please describe your strategy in the experiment in about two sentences. 
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