

Project no.
035086

Project acronym
EURACE
Project title

An Agent-Based software platform for European economic policy design with heterogeneous
interacting agents: new insights from a bottom up approach to economic modelling and simulation

Instrument STREP

Thematic Priority IST FET PROACTIVE INITIATIVE “SIMULATING EMERGENT PROPERTIES IN
COMPLEX SYSTEMS”

Deliverable reference number and title
D1.1: X-Agent framework and software environment for agent-based models in economics

Due date of deliverable:

Actual submission date:

Start date of project: September 1st 2006 Duration: 36 months

Organisation name of lead contractor for this deliverable
University of Sheffield - USFD

Revision 3
10/09/07

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)

Dissemination Level

PU Public
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Workpakage 1, Deliverable 1.1ContentsExeutive Summary 51 Introdution 72 Bakground 82.1 X-Mahines . 82.1.1 Transition Funtion 92.1.2 Memory and States 103 Design Deisions 113.1 Feature Identi�ation . 113.2 System Desription . 113.3 Labour Market Case Study 123.4 Uni�ed Modelling Framework 213.5 Handling Of Time . 213.5.1 Communiation . 223.5.2 Updating Agents . 233.6 Communiation Networks . 253.6.1 Agent-Environment Interation 253.6.2 Agent-Agent Interation 253.7 Simulation Output and Data Storage 264 Framework Implementation 274.1 Xparser . 274.1.1 Proess Sequene . 284.2 Framework Communiation 284.3 X-Mahine Agent Markup Modelling Language (XMML) . . . 314.3.1 Features of XMML . 314.3.2 Data . 324.3.3 C Language . 324.3.4 Data Strutures . 334.3.5 Array . 334.3.6 XMML Components 334.3.7 Agents . 344.3.8 Messages . 345 Model Creation 355.1 Data strutures . 355.2 De�nition of XMML tags . 355.3 Handling Variables in Agent Memory 355.4 Handling Messages . 365.5 Handling Dynami Arrays . 365.6 Outputs Produed by the Xparser 37
Otober 1, 2007 Page 1/71

Workpakage 1, Deliverable 1.16 Understanding Eonomi Models: The C�S Model 386.1 Version 1: Without the Mall Agent 386.2 Version 2: With the Mall Agent 386.2.1 Graphs . 387 Building Eurae by Markets 447.1 The Labour Market Model . 447.1.1 Agents . 477.1.2 Funtion Layout . 477.1.3 Implementation . 487.1.4 Results and Conlusions 487.2 The Asset Market Model . 497.2.1 Agent Population . 497.2.2 Internal Dependenies 497.2.3 Implementation . 497.2.4 Current Work . 50A XMML Shema 54B C�TS Model 58C Labour Market Model 63Referenes 70Glossary 71

Otober 1, 2007 Page 2/71

Workpakage 1, Deliverable 1.1List of Figures1 Transition funtion . 92 X-mahine agent . 103 Firm state transition diagram 174 Household state transition diagram 175 Firm state transition diagram updated 186 Household state transition diagram updated 187 Layers of abstration for the framework. 228 Labour market funtion dependenies 249 Xparser usage . 2710 Communiation dependenies between funtions 2911 Syning ommuniation dependenies as synhronisation layers 3012 Funtion dependeny graph of C�S model version 1 4013 Funtion dependeny graph of C�S model version 2 4114 Communiation synhronisation layers of C�S model version 2 4215 Graph showing the relation of prie, stok sold, and prodution 4216 Graph showing the relation between average wage, prie, pro-dution, and the stok sold 4317 Blakboard diagrams desribing disussions on the labourmarket model . 4518 Funtion dependeny of the labour market day by day 4519 Funtion dependeny graph of the labour market 4620 Updated funtion dependeny graph of the labour market . . 4721 The ommuniation synronisation layers of the labour mar-ket model . 4822 Dotty diagram of household and �rms. 5123 Funtion dependeny graph for the Finanial ManagementRole of the Household. 5224 Funtion dependeny graph for the Portfolio Seletion Algo-rithm of the Household. 53

Otober 1, 2007 Page 3/71

Workpakage 1, Deliverable 1.1List of Tables1 Firm system states . 132 Firm input and output messages 133 Firm memory pre and post state transitions 144 Household funtions . 155 Firm funtions . 196 Household funtions . 207 C fundamental data types. 328 Example of the employee data type. 339 De�ning an array of prede�ned size. 3310 De�ning a dynami array. 3311 Example of a Firm Agent. 3412 Example of desribing messages. 3413 Sequene of events in the C�S model 3914 Six step labour market algorithm. 44

Otober 1, 2007 Page 4/71

Workpakage 1, Deliverable 1.1Exeutive SummaryAgent-based modelling provides more innovative approahes to failitatingresearh into the unresolved issues of omplex systems. EURACE aims touse agent-based modelling to explore the �elds of eonomis to model theEuropean eonomy onsequently providing insights into eonomi models,behaviour of human soieties, better omputational models and improvingparallel omputing paradigms. This doument represents the Deliverable1.1 whih gives insights into the modelling framework, FLAME, and how ithas been applied to eonomi modelling.An agent-based modelling framework, FLAME [6℄, previously developedat the University of SheÆeld, has been suessfully used to model biolog-ial systems and unovered useful results. The framework, whih uses X-mahines as the basi omputational model is exible enough to be appliedto various disiplines from biology to eonomis. Some of the features whihmake it exible have been desribed in the report:� The framework uses XMML, X-mahine markup modelling language,to de�ne agents and the ommuniations between them.� Various feature are provided by XMML and the framework whih al-lows the modellers to easily use the framework to design their ownmodels and test their outomes.� A few examples of its appliation to eonomi models have proven itssuess and have been presented here.� The unit at the University of SheÆeld (USFD) has losely been work-ing with the other eonomi partners in gathering the requirementsfor system design of the eonomi models involved in EURACE. Do-uments produed by GREQAM1 present abstrat details of the eo-nomi requirements the design of the �nal model should ontain. Allof these issues have been targeted and translated into omputationalmodelling terms.� USFD has also been working with the unit STFC2 to produe eÆ-ient models for deploying the agents onto parallel platforms produ-ing platform independent and eÆient parallel solutions to how variouseonomi models will be brought together and ommuniation hazardswill be handled.Various examples of eonomi models have been produed highlighting thesuess of the framework and XMML. These inlude the labour market andthe redit market(work done at the Bielefeld working meeting (29/05/07- 02/02/07)). Results of the labour market have been shown whereas theredit market is urrently under onstrution.This report presents the framework and the exibility of how the XMMLshema an be used to produe various models of the eonomy allowing1Universit�e de la M�editeran�ee.2Rutherford Appleton Laboratories.Otober 1, 2007 Page 5/71

Workpakage 1, Deliverable 1.1di�erent units to design and test their models and bring them together intoone simulation.

Otober 1, 2007 Page 6/71

Workpakage 1, Deliverable 1.11 IntrodutionThis doument ontains the details of e�orts to implement eonomi modelsas agent-based simulations.The remainder of the doument will be organised as follows:� Bakground - Overview of agent-based modelling and software sys-tem spei�ation;� Design Deisions - Contains implementation issues surrounding themodelling requirements;� Framework Implementation - Contains implementation details ofthe framework;� Model Creation - Contains details about how to implement models;� Understanding Eonomi Models: The C�S Model - Containsdetails on implementing the C�TS model;� Building Eurae by Markets - Contains details on implementingthe labour and redit markets;� Appendix A { XMML Shema, whih formally de�nes the XMMLlanguage;� Appendix B { C�TS Model XMML, whih formally de�nes theC�TS model;� Appendix C { Labour Market Model XMML, whih formallyde�nes the labour market model;This report presents the work ompleted for deliverable D1.1 depitinghow the X-agent framework FLAME failitates use of agent based modellingin eonomis. This deliverable ats as part of the workpakage 1 whih om-prises of agent-based software engineering methodologies being laid down forthe projet EURACE.Keeping in aordane with Milestone 1.1, the report presents a de�ni-tion of the XMML modelling language and how it is used for eonomis andhow agent-based models of eonomis an be written using it.

Otober 1, 2007 Page 7/71

Workpakage 1, Deliverable 1.12 BakgroundAgent-based modelling is a large researh �eld allowing researhers to ex-plore omplex systems. Examples of whih inlude ant and bee olonies,biologial ellular strutures and human soieties. The importane of thisapproah is that it allows a bottom-up proedure, where the fous goes intothe individual interating units whih possess de�ned rules. Aompany-ing these rules, when simulated, the individual interations will produe anemergent pattern of behaviour whih an be observed of the system as whole.This pattern an then be studied to test and understand the behaviour ofthe omplex system deduing if the rules introdued were justi�able or needalteration. This helps deeper understanding of the interating agents andtheir behaviour whih was otherwise not easily observable if these systemswere viewed as a whole.The term `agent ', as Tesfatsion [14℄ desribes, `refers broadly to a bundleof data and behavioural methods representing an entity onstituting part ofa omputationally onstruted world'. In eonomis, the de�nition of anagent an although vary from representing a group of agents like a �rmomposed of many individuals or an individual itself like a ustomer or aworker.Agent-based modelling takes the view that systems an be modelledusing many interating objets. Objets, or agents, are self-ontained au-tonomous mahines that an ommuniate with eah other. To put a morepreise de�nition onto an agent, we suggest a formal omputational modelbased on speifying software systems alled X-mahines. XMML is the mod-elling language used to represent these agents as X-mahines and how theywill be ommuniating between eah other.2.1 X-MahinesThe X-mahine is a general omputational model introdued by Eilenberg[7℄ and later modi�ed to represent more omplex arhitetures at the Uni-versity of SheÆeld [8℄. Contrary to Turing mahines, X-mahines have beenused to model omplex systems and have enhaned their own apability tomore omplex strutures. One of the enhanements of the X-mahine is theommuniating X-mahine of whih there are several approahes [1, 2℄. Theapproah used in XMML onsists of a set of autonomous X-mahines whihuse messages to ommuniate with eah other. There are no expliit inputor output omponents of these mahines apart from this. Figure 2 depitsthe struture of an X-mahine agent.Stream X-mahines, introdued by Layok [12℄, are another extensionof the basi X-mahine model and forms the basis for de�ning the agents inXMML. The basi de�nition of an agent would thus, in aordane to theomputational model, ontain the following omponents:1. A �nite set of internal states.2. A set of transition funtions that operate between states.Otober 1, 2007 Page 8/71

Workpakage 1, Deliverable 1.1
s 1 s 2

S T A T E S

M E M O R Y

m 1 m 2

M e s s a g e t 1 M e s s a g e t 2Figure 1: Transition funtion3. An internal memory set. In pratie, the memory would be a �nite setand an be strutured in any way required.4. A language for sending and reeiving messages between other agents.X = (�;�; Q;M;�; F; q0;m0) (1)where,� � are the set of input alphabets� � are the set of output alphabets� Q denotes the set of states� M denotes the variables in the memory. This an have a possibility ofbeing in�nite� � denotes the set of partial funtions � that map and input and mem-ory variable to an output and a hange on the memory variable. Theset �: ��M �! ��M� F in the next state transition funtion, F : Q� � �! Q� q0 is the initial state and m0 in the initial memory of the mahine.2.1.1 Transition FuntionThe transition funtions allow the agents to hange the state in whih theyare in, modifying their behaviour aordingly. These would require as inputstheir urrent state s1, urrent memory value m1, and the possible arrivalof a message that the agent is able to read, t1. Depending on these threevalues the agent an then hange to another state s2, updates the memory tom2 and optionally sends a message, t2. Figure 1 depits how the transitionfuntion works within the agent.Some of the transition funtions may not depend on the inoming mes-sage. Thus the message would then be represented as:Message = f;; < data >g (2)Otober 1, 2007 Page 9/71

Workpakage 1, Deliverable 1.1
F1

Memory

in

out

S3

M M’

Messages

X−Machine Agent

F2

S1 S2

Figure 2: X-mahine agentThese agent transition funtions may be expressed in terms of stohas-ti rules, thus allowing the multi-agent systems to be termed as stohastisystems.2.1.2 Memory and StatesThe di�erene between the internal set of states and the internal memory setallows for added exibility when modelling systems. There an be agentswith one internal state and all the omplexity de�ned in the memory orequivalently, there ould be agents with a trivial memory with the om-plexity then bound up in a large state spae. There are good examplesof hoosing an appropriate balane between these two as this enables theomplexity of the models to be better managed.

Otober 1, 2007 Page 10/71

Workpakage 1, Deliverable 1.13 Design DeisionsAfter disussions with eonomists about an eonomi model for Europe,partners at the Universit�e de la M�editerran�ee (GREQAM) reated a mod-elling requirements and spei�ations doument [16, 17℄. This hapter de-sribes the implementation issues surrounding these requirements/ spei�-ations inluding formally speifying agents, transforming the spei�ationinto a simulation and the parallel proessing issues of running a simulationon high performane parallel omputers.3.1 Feature Identi�ationThe requirements doument highlights the following issues for building high-�delity, high-resolution agent-based models as desribed by Pryor et al. 1998[13℄:� Identify ators.� Develop a set of operations that the ators perform.� De�ne the appliable operations in a logial sequene.� Identify and quantify the resoures on-hand and remotely aessibleto the ators.3.2 System DesriptionSpeifying software behaviour have traditionally involved �nite state ma-hines whih allow modelling a system in terms of its inputs and outputs.More abstrat system desriptions inlude UML whih has already beenproposed as a way to design agent-based models [4, 3, 10, 19℄ but thesetehniques lak preise desriptions needed for generating simulation odeand for testing. Testing a system spei�ed as a �nite state mahine makesit easier for the behaviour to be expressed as a graph and allow traversals ofall possible and impossible exeutions of the system 3. Conventional statemahines desribe the state-dependent behaviour of a system in terms ofits inputs, but this fails to inlude the e�et of data. X-mahines are anextension to onventional state mahines that inlude the manipulation ofmemory as part of the system behaviour, and thus are a suitable way tospeify agents. The advantages of this approah have been highlighted inSetion 2.1. Desribing a system would thus inlude the following individualstages for reating a model:� Identifying the system funtions� Identify the states whih impose some order of funtion exeution� Identify the input messages and output messages� For eah state identify the memory as the set of variables that areaessed by outgoing and inoming transition funtions3This is similar to branh traversal testing.Otober 1, 2007 Page 11/71

Workpakage 1, Deliverable 1.13.3 Labour Market Case StudyA text based spei�ation of the labour market was reated by partners atthe University of Bielefeld [15℄, whih de�ned two types of agent, Firms andHouseholds. After Disussions at the working meeting in Bielefeld (29 May{ 2 June 2007) the labour market algorithm an be summarised as follows:1. Every month Firms alulate their prodution, inluding required work-ers2. Firms at aordingly and send out any vaanies3. Households reeive vaanies, rank them, and send job appliations4. Firms reeive appliations, rank them, and send job o�ers5. Households reeive job o�ers, then send a o�er aeptane6. Firms reeive o�er aeptane(s) then update their wage o�er (depen-dent on how many vaanies that are �lled)The sequene of operations desribed are meant to over one workingday in the simulation.Following the method for reating an X-mahine model, the �rm agentsystem funtions an start to be identi�ed:� Calulate prodution� Send vaanies� Reeive appliations� Rank appliations� Send job o�ers� Reeive o�er aeptane(s)� Update wage o�erAlso the system states that impose some order of funtion exeution anstart to be de�ned. This is ahieved by assoiating transition funtions witha start state and an end state, hene the transition between states (the startand �nish state an be the same state), see Table 1. The next stage is toidentify the input and output messages assoiated with a funtion transition,see Table 2. Finally identifying the pre and post memory of the transitionfuntions, see Table 3. The same method an be applied to the Householdagent, see Table 4.
Otober 1, 2007 Page 12/71

Workpakage 1, Deliverable 1.1
Start State Funtion End Stateproduing alulate prodution prepare produtionprepare prodution send vaanies get appliationsget appliations reeive an appliation get appliationsget appliations rank appliations appliations rankedappliations ranked send job o�ers get o�er aeptanesget o�er aeptanes reeive o�er aeptanes get o�er aeptanesget o�er aeptanes update wage o�er produingTable 1: Firm system states

Start State Input Funtion End State Outputproduing day of alulate preparethe month prodution produtionprepare send get vaaniesprodution vaanies appliationsget job reeive an getappliations appliation appliation appliationsget rank appliationsappliations appliations rankedappliations send get o�er job o�ersranked job o�ers aeptanesget o�er o�er reeive o�er get o�eraeptanes aeptane aeptane aeptanesget o�er update produingaeptanes wage o�erTable 2: Firm input and output messages
Otober 1, 2007 Page 13/71

Workpakage1,Deliverable1.1

Start State Mpre Input Funtion End State Mpost Outputproduing day of month day of the alulate prepare required workers =to at = x month = x prodution prodution al prodution()prepare required workers > send get vaaniesprodution urrent workers vaanies appliationsget job reeive getappliations appliation appliations appliationsget rank appliationsappliations appliations rankedappliations send get o�er job o�ersranked job o�ers aeptanesget o�er o�er reeive o�er get o�er urrent workers++aeptanes aeptane aeptanes aeptanesget o�er update produing wage o�er =aeptanes wage o�er update wage o�er()Table 3: Firm memory pre and post state transitions

Otober1,2007
Page14/71

Workpakage1,Deliverable1.1Start State Mpre Input Funtion End State Mpost Outputunemployed vaany reeive vaanies unemployedunemployed send appliations get o�ers appliationsget o�ers o�er aept o�er employed o�er aeptaneTable 4: Household funtions

Otober1,2007
Page15/71

Workpakage 1, Deliverable 1.1For both the Firm and the Household a state transition diagram an beprodued, see Figures 3 and 4. Immediately we an see that there is a missingstate transition in the Household agent from employed to unemployed. Tomake this transition you would expet a redundany message to arrive for theHousehold. This an be added to the state transitions as a funtion alled'made redundant' with start state 'employed', input 'redundany', and endstate 'unemployed'. The redundany message must ome from the employees�rm, so we need to add this to the Firm agent. From the Firm state 'prepareprodution' there is only one transition funtion when 'required workers >urrent workers'. But there are two other instanes when both values areequal or required workers is less than the urrent number of workers. Inthis ase the �rm would need to sak the appropriate number and send outredundany messages. The �nal model is desribed by the Tables 5 and 6with the state transition diagrams in Figures 5 and 6.In some states where messages are being reeived, 'get appliations','get o�er aeptane', and 'get o�ers', there omes a point when the agentneeds to stop waiting for inoming messages and perform some operation,like ranking. For the X-mahine model any state transition requires an in-oming message or the memory being in a required state. The memory stateould inlude a ount for the number of messages read and stop after a er-tain number. Exept there ould be the possibility of no inoming messagesand therefore never reah the limiting value. Or a memory value ould in-lude an internal lok tiker and the agent waits for a ertain amount oflok tiks, exept there would need to be a mehanism to advane the loktik. For a message event approah an inoming message ould ome froma entral ontrol agent that knows that there are no more messages to beread. This ould be ahieved by all agents that have �nished sending a er-tain type of message, sending a message to the ontrol agent. The ontrolagent has a list of all agents that send the type of message and knows whenthey have all �nished, then sends a message to agents that read in that typeof message to say that no more messages are being sent. A �nal onept isthat of a null message, or one that states that there are no more messagesto read. This has been de�ned by the message types 'vaanies �nished','appliations �nished', and 'o�er aeptane �nished' in the model.The need for a null message is tied to the idea that the eonomi modelsare de�ned by a sequene of ations that must take plae in one iteration, orworking day. For example the labour market is run ompletely one everyday. Therefore every agent needs to have available all inoming messages forthe sequene to omplete properly. Another view is that agents should notwait for all inoming messages as ommuniation should be ontinuous, asshould the labour market, as real labour markets do not start and ompleteon the same working day usually but is a ontinuous proess over everyworking day. This strategy though ould involve asynhronous updates,as desribed in Subsetion 3.5 whih would not be easily ompatible withparallel proessing.
Otober 1, 2007 Page 16/71

Workpakage 1, Deliverable 1.1
p r o d u c i n g p r e p a r e p r o d u c t i o n

g e t a p p l i c a t i o n s

g e t o f f e r a c c e p t a n c e s

c a l c u l a t e p r o d u c t i o n

s e n d v a c a n c i e s

r a n k a p p l i c a t i o n s

r e c e i v e a p p l i c a t i o n s

r e c e i v e o f f e r a c c e p t a n c e s

r a n k e d a p p l i c a t i o n s

s e n d j o b o f f e r s

u p d a t e w a g e o f f e r

Figure 3: Firm state transition diagram

e m p l o y e d u n e m p l o y e d

g e t _ o f f e r s

a d d _ t o _ v a c a n c y _ l i s t

s e n d _ a p p l i c a t i o n s

a c c e p t _ o f f e r

n o _ o f f e r sFigure 4: Household state transition diagram
Otober 1, 2007 Page 17/71

Workpakage 1, Deliverable 1.1
p r o d u c i n g p r e p a r e _ p r o d u c t i o n

g e t _ a p p l i c a t i o n sg e t _ o f f e r _ a c c e p t a n c e

c a l c _ p r o d u c t i o n

s a m e _ w o r k e r s

l e s s _ w o r k e r s

m o r e _ w o r k e r su p d a t e _ w a g e _ o f f e r

r a n k _ a p p l i c a t i o n _ l i s t

a d d _ t o _ a p p l i c a t i o n _ l i s ta d d _ t o _ w o r k e r sFigure 5: Firm state transition diagram updated

e m p l o y e d u n e m p l o y e d

g e t _ o f f e r s

m a d e _ r e d u n d a n t

a d d _ t o _ v a c a n c y _ l i s t

s e n d _ a p p l i c a t i o n s

a c c e p t _ o f f e r

n o _ o f f e r sFigure 6: Household state transition diagram updated
Otober 1, 2007 Page 18/71

Workpakage1,Deliverable1.1

State Mpre Input Funtion State Mpost Outputproduing day to at = x day of month(x) al prodution prepare prod required workers =al prodution()prepare prod required workers same workers produing==urrent workersprepare prod required workers less workers produing urrent workers redundanies< =urrent workers required workersprepare prod required workers more workers get appliations vaanies>urrent workersget appliations appliation add to get appliationsappliation listget appliations appliations �nished rank appliation list get o�er aept job o�ersget o�er aept o�er aept add to workers get o�er aept urrent workers++get o�er aept o�er aept �nished update wage o�er produingTable 5: Firm funtions

Otober1,2007
Page19/71

Workpakage1,Deliverable1.1State Mpre Input Funtion State Mpost Outputemployed redundany made redundant unemployedunemployed vaany add to vaany list unemployedunemployed vaanies �nished send appliations get o�ers appliationsget o�ers o�er aept o�er employed o�er aeptaneget o�ers o�ers �nished no o�ers unemployedTable 6: Household funtions

Otober1,2007
Page20/71

Workpakage 1, Deliverable 1.13.4 Uni�ed Modelling FrameworkBy reating a uni�ed modelling framework partners on the projet an usetheir expertise to reate models of their own partiular eonomi markets.These markets should then be able to be ombined to reate a marosopimodel of the European eonomy in a synergeti way. The uni�ed mod-elling framework should also enable the parallel proessing of a simulationindependently from the model and its modellers.Abstration layers are very important as a way of hiding implementa-tion details of a partiular set of funtionalities. Disussions with the theRutherford Appleton Laboratory (STFC) have produed the following threelayered approah. First the model layer that modellers interat with andhave knowledge about. The pereption at this level is of a olletion ofagents, that run through operations in order, and ommuniate. The se-ond layer, the framework layer, is the engine of the simulation. It handlesthe reading in of agent start states, alloates agents to proessors, runs agentoperations in order, and sends agent messages. The third and �nal layer isthe ommuniation layer and handles agents reeiving messages. Usuallyagents only read a relevant subset of all the messages sent, depending onvarious fators, and it is this layer that �lters and subdivides the availablemessages. A blok diagram of this approah has been presented in Figure7.3.5 Handling Of TimeComputer simulations operate on two notions of time:� The advanement of proessing time� The advanement of simulation timeThe proessing time is the program progress and simulation time dependson program progress. For agent-based simulations proessing time is theproessing of agents and the handling of ommuniation. Simulation timeis advaned between periods of proessing, for example when every agent isupdated and all ommuniation has reahed its destination.Deiding whih agent to run and when to proess/update it is a majorissue.For some theoretial results it an make a major di�erene in the out-ome. The most dramati example is the Game of Life where synhronousupdates reate patterns and strutures apable of omputation, but underan asynhronous sheme the model world quikly beomes lifeless. Anotherexample omes from game theory where synhronous turns of players anevolve osillation of states while asynhronous player turns quikly �nd astable equilibrium [9℄.Partiularly for ommuniating agents is when ommuniation ompletes,whih is when messages are sent when are they available to be reeived. Thisan involve two kinds of update strategies - synhronous, at the same time,and asynhronous, not at the same time. These updates an be de�ned inthe ontext of ommuniation as follows:Otober 1, 2007 Page 21/71

Workpakage 1, Deliverable 1.1
- A g e n t
- A g e n t o p e r a t i o n s
- L o g i c a l S e q u e n c e o f o p e r a t i o n s
- C o m m u n i c a t i o n n e t w o r k s (w h i c h a g e n t s c a n r e a d o t h e r a g e n t s m e s s a g e s)

- S p r e a d o f a g e n t s o n p r o c e s s o r (s)
- C a l l i n g o f f u n c t i o n s o n a g e n t s i n o r d e r
- A g e n t m e s s a g e t r a n s m i s s i o n
- I npu t and ou tpu t t o f i l e s

- A g e n t m e s s a g e d e l i v e r y f i l t e r i n g

M o d e l L a y e r

F r a m e w o r k L a y e r

C o m m u n i c a t i o n L a y e r

Figure 7: Layers of abstration for the framework.� Synhronous:{ Communiation only ompletes after every agent is updated one.{ Order of agent updates does not matter.� Asynhronous:{ Communiation ompletes after every agent is updated.{ Order of agent updates matters.3.5.1 CommuniationCommuniation is very important when dealing with parallel proessing ofsimulations. It an at as a major bottlenek that an slow down simulationtimes. Disussions with partners at STFC suggested that it is the startingup and ending of ommuniation between proessors that is the major fatorand not the amount of data being sent [11℄. This suggests that the leastamount of ommuniation synhronisation points, or ompletes, the better.It also implies that it is better to send as muh information as possible in asingle ommuniation than to send eah piee of ommuniation individually.Deiding whih omputer platform to be used should not a�et the re-sults of a simulation. Proessing and ommuniation time should a�etsimulation time and not in the other diretion. So the framework shouldbe designed to be platform independent. This beomes important whenOtober 1, 2007 Page 22/71

Workpakage 1, Deliverable 1.1handling agent updating and ommuniation. In a simulation, agent om-muniation should not be a�eted by the number of proessors used northe physial networks onneting them 4. Summarising the points to beonsidered:It should not matter that an agent is not on the same omputingnode. This requires all agent interation is ahieved via ontatless om-muniation via messages. Contatless here refers to the inability to diretlypoll or aess another agents memory values, as this is not possible if theagents are on a di�erent omputing nodes.Any ommuniation sent should be available for when it is neededto be read. This means operations that reeive messages an only be runwhen messages have arrived. The physial bandwidth of the ommuniationhardware used to run a simulation will not a�et the results.3.5.2 Updating AgentsThere are two ways an agent an be updated/proessed. Updating an bebased on proessing time information, alled inremental based, or rely oninoming ommuniation, alled event based. Though inremental basedself updating an inlude inoming ommuniation, and event based ouldinlude an inoming timed event.Beause agents only ommuniate via messages, they an be updated atany time if any messages they need to read have arrived. So the only thinga�eting the updating of agents is the ommuniation dependenies, i.e. wean't update this agent until other agents have been updated. By using thestate mahine desription to alulate the possible order of the funtions,whih shall be alled internal dependenies, and the ommuniation inputand output between di�erent funtions, the ommuniation dependenies, afuntion dependene graph an be reated. A paper [18℄ from 2002 uses thisdependene analysis tehnique to aid automated test ase generation, whihould also aid testing of models in the framework. Figure 8 shows a depen-deny graph for the labour market of all the ations that an happen in oneday, i.e. after a date event happens and waiting for the next one. From theommuniation dependenies de�ned in the graph, one an add stages whereommuniation must omplete before the orresponding funtion requiringthe input is proessed. One an also assert that an agent an be updateduntil it is waiting for inoming ommuniation and an only be updatedagain till after the orresponding ommuniation ompletes. The graph alsoshows what agents need updated when, and depending what state they arein, the funtion that is exeuted.4The speed of the ables or buses used for onnetion between proessors responsiblefor arrying agent ommuniation
Otober 1, 2007 Page 23/71

Workpakage 1, Deliverable 1.1

c a l c _ p r o d u c t i o n

s a m e _ w o r k e r s l e s s _ w o r k e r sm o r e _ w o r k e r s

r e d u n d a n c y

a d d _ t o _ a p p l i c a t i o n _ l i s t

r a n k _ a p p l i c a t i o n _ l i s t

a d d _ t o _ w o r k e r s

u p d a t e _ w a g e _ o f f e r

v a c a n c i e s

j o b _ o f f e r s

m a d e _ r e d u n d a n t

a d d _ t o _ v a c a n c y _ l i s t

r a n k _ v a c a n c i e s

a c c e p t _ o f f e r n o _ o f f e r s

a p p l i c a t i o n s

o f f e r _ a c c e p t a n c e

F i r m F u n c t i o n D e p e n d e n c i e s

H o u s e h o l d F u n c t i o n D e p e n d e n c i e s

C o m m u n i c a t i o n C o m p l e t e s

Figure 8: Labour market funtion dependenies

Otober 1, 2007 Page 24/71

Workpakage 1, Deliverable 1.13.6 Communiation NetworksParallel omputation is easily handled when agents are ommuniating viamessages. The use of the idea of agent-agent and agent-environment inter-ations is an abstration above the fundamentals. The only availability foragents ommuniation are sending messages and reeiving messages.3.6.1 Agent-Environment InterationThe idea of an `environment' an be something that holds information thatould possibly hange, whih an be embodied as an agent itself. Examplesof environments in agent-based models an be:� Land that grows rops (the ground over environment).� Chemial signals (the hemial environment).� Newspaper business setions (the eonomi environment).FLAME has been used for modelling biologial systems, espeially bi-ologial ells, where external solvers are needed to solve hemial di�usionand the physial movement of the ells. It is funtions in these `environment'agents that an be used to all external solvers, and pass bak informationbak to the ells.3.6.2 Agent-Agent InterationAgent-agent interation is when one agent sends a message and another readsit. The agent reading messages an �lter messages depending on spei�edvariables. Examples of whih inlude:� Its `id' (diret).� Its `region' (loal area interation).Agents do not need to hold a list of pointers to other agents to representtheir loal neighbourhood. This an be ahieved by the following ways:� Agents having the same region number.� Agents having a trade group number.� Agents having a loation and �ltering messages via a distane metri.Few instanes, where the buyer has a preferred seller, suh informationwould be held within the agent memory. Networks in agent based modelsare fully de�ned with agents, not a top down global view.
Otober 1, 2007 Page 25/71

Workpakage 1, Deliverable 1.13.7 Simulation Output and Data StorageData storage is an important issue. Currently data is being held in XMLformat for ease of aess but this presents problems with inreasingly large�le sizes. Other options to resolve this issue are being onsidered:� Common Data Format (CDF) for the storage and manipulation ofmulti-dimensional data sets� Database whih would also easier extration of spei� data� XML alternatives: YAML, JSON, SDLDisussions and experiments with these and other �le formats are ur-rently being performed by SheÆeld and STFC.

Otober 1, 2007 Page 26/71

Workpakage 1, Deliverable 1.14 Framework ImplementationInitial work on implementation had already been undertaken by SimonCoakley as part of his Ph.D. This involved reating a parser program thattakes a model desription as an input and produes a runnable simulationprogram, either in serial or parallel. Model desriptions are written in a �leformat alled XMML whih is a spei� tag de�ned XML �le. The XMLformat provides a struture for data that omputers and humans an un-derstand. A model desription �le allows metadata about a model to beused to diret soure ode reation (via a parser program), espeially forparallel ode that modellers do not need to enounter. It an also be usedto diret testing e�orts and produe diagrams of a model that aid in itsunderstanding.4.1 XparserThe Xparser is the name of the program that reads XMML model �les andprodues simulation program ode, see Figure 9. Additional features thathave been added sine the projet started inlude:� Funtion dependenies { agent funtions an now be ordered in suh away that the simulation program an exeute them at the best possiblemoment (whih is alulated), and allows for future use of threadingtehniques.� Template engine { the logi behind the generated simulation ode hasbeen transfered to template �les so that ollaboration between partnersis easier.� Dynami arrays for agent memory { the ability to have dynami sizedarrays in agent memory has been added (although movement of agentson a parallel mahine used for load balaning has yet to be imple-mented).The Xparser also has an XML reader to read the XMML model desrip-tions, and also generates graphs of the funtion dependenies for analysis.
x p a r s e r

X M M L
f i le

S i m u l a t i o n sFigure 9: Xparser usageThe Xparser is ompletely written in C with the use of standard librariesonly. This was so that the program ould be deployed on any platform (witha C ompiler) simply and easily. Beause most of the logi is held in thesimulation template �les it is viable to reate a program in any language oruse additional libraries that would do the same job as the Xparser.Otober 1, 2007 Page 27/71

Workpakage 1, Deliverable 1.14.1.1 Proess SequeneAgent funtionality is de�ned by its funtions. Funtions hange the agentstate and drive a simulation forward. The sequene that these funtions arerun is determined by their dependeny on eah other, de�ned in the modelXMML. Dependenies are either ommuniation, dependent on messages,or internal, dependent on agent internal memory.It is possible to onstrut a dependeny graph (a direted ayli graph)to show the sequene of events that happen in a simulation. Whenever aommuniation dependeny ours, in parallel, this requires a synhronisa-tion blok between the nodes so that messages arrive in time to meet thedependeny. These synhronisation bloks are a major time bottle nek andso the fewer there are the more eÆient the simulation. By traversing adependeny graph it is possible to alulate the most eÆient time to runfuntions and where best to plae synhronisation bloks.Creating the funtion dependeny graph urrently uses a simple algo-rithm. It �nds funtions with no dependenies on it, assigns them a layer,removes them from the graph, and reruns the algorithm.Figure 10 shows eight funtions with dependenies. All are ommunia-tion (denoted with a `C') exept the dependeny of Funtion 2 on Funtion5 whih is internal (denoted with an `I'). Beause internal dependenies donot need a ommuniation synhronisation blok we an organise the syn-hronisation bloks in suh a way that we need the least amount of them.An example of this strategy is the organisation of the funtions from Figure10 into layers separated by synhronisation bloks in Figure 11.4.2 Framework CommuniationThe usual attribute that separates agent-based models from other modellingtehniques (like di�erential equations) is the use of spae. Agents have aloation attribute that plaes them in spae in relation to other agents. Toreate new results from this added dimension of spae, ommuniation isusually restrited to a distane metri, so that information is kept loalised.This knowledge an be used to diret eÆient ommuniation in a modelimplementation.Currently to eÆiently handle messages with respet to loalised om-muniation: The urrent implementation of the framework is based aroundthe idea of spae as a Cartesian sale in 1, 2 or 3 dimensions, with:� All agents de�ned with a Cartesian loation� All messages are de�ned with originating Cartesian loation and range� Agent spae is partitioned along Cartesian linesIn this way when a message is sent by an agent, the message an bede�ned as originating from the agent loation and an only be read by agentswith loation that is de�ned within the message range. To aid eÆienymessages are only sent to partitions in agent spae that inlude agents withinthe message range. After disussions with members of the STFC unit aboutOtober 1, 2007 Page 28/71

Workpakage 1, Deliverable 1.1

F u n c t i o n _ 1

F u n c t i o n _ 4

F u n c t i o n _ 3

F u n c t i o n _ 2

F u n c t i o n _ 5

F u n c t i o n _ 6

F u n c t i o n _ 7

F u n c t i o n _ 8

I

C

C

C

C

C

C

CFigure 10: Communiation dependenies between funtions

Otober 1, 2007 Page 29/71

Workpakage 1, Deliverable 1.1

F u n c t i o n _ 1

F u n c t i o n _ 4

F u n c t i o n _ 3

F u n c t i o n _ 2

F u n c t i o n _ 5

F u n c t i o n _ 6

F u n c t i o n _ 7

F u n c t i o n _ 8

I

C

C

C

C

C

C

C

Figure 11: Syning ommuniation dependenies as synhronisation layers

Otober 1, 2007 Page 30/71

Workpakage 1, Deliverable 1.1parallel ommuniation in HPCs the �ltering of messages that are to besent to di�erent nodes is not required. Firstly that �ltering of messages isdone twie, when messages are sent between nodes, and when agents tryand read inoming messages. Seondly that the �ltering of messages beforethey are sent between nodes is unneessary. This is beause the time ostof sending messages between nodes is more weighted on the opening andlosing of ommuniation and less on the atual amount of data that is sent[11℄, this iterates the importane of keeping ommuniation synhronisationbloks to a minimum. Therefore it is more eÆient to send all out goingommuniation to all nodes. This then shifts all eÆieny e�orts onto the�ltering of messages for agents to read. This strategy is mentioned in Setion3.4.Also in e�orts to make the framework more generi the idea of spaeshould not be restrited by a Cartesian sale, or in fat any distane sale.This is beause agent spae might be de�ned as groupings, for exampleNUTS-2 regions.4.3 X-Mahine Agent Markup Modelling Language (XMML)A desription language for agent-based simulations, XMML has been pre-sented here. XMML is orientated towards representing agent-based mod-els as formalised abstrat state mahines, partiularly ommuniating X-mahines. The motivation was to provide a formalised framework to en-hane reating and testing of agent-based models and also provide innateparallel proessing apabilities.4.3.1 Features of XMMLThere are a number of fators whih make XMML unique to ahieve itsresearh purposes. A few have been listed below:� XMML is not restrited by researh area.� It is not restrited by any grid or loation based struture.� Communiation is not restrited between agents, but mehanisms areavailable to eÆiently �lter inoming messages.� Agents are updated at the most eÆient time and in parallel (if avail-able)XMML is meant to aid agent-based modellers in developing more for-malised models that are easier to reate, test, share, and be parallel pro-essable without additional work. The de�nition of the model desriptionlanguage here does not speify how to parse the model desription into asimulation program but de�nes what is required and how the simulation isadvaned.
Otober 1, 2007 Page 31/71

Workpakage 1, Deliverable 1.14.3.2 DataVariables represent the data that is possessed by the agent in their memoryand the messages they send or reeive. While exeuting a simulation pro-gram the details of this data needs to be known in advane. The advantageof this approah are that data strutures and algorithms that handle data,espeially in parallel, an be automatially generated:� Creating data strutures for agents and messages� Creating funtions that handle input and output to �les� Creating funtions that aess agent memory� Creating funtions that interat with messages� Creating parallel algorithms that handle data between nodesVariables ontain a data type and a name. Data types are used to assignstorage for the variable and de�ne the type of data that will be held inthat loation. Variable names are used to referene and alter the data ifneeded. The following XML represents a variable of type oat and namedtemperature.<var><type>float</type><name>temperature</name></var>4.3.3 C LanguageThe urrent XMML to simulation ode parser is written in the C program-ming language, therefore allowing C data types to be used. Examples ofthese have been given in Table 7.Type Desription Usual Byte Size Example Usageint Integer number 2 bytes int ount;ount = 5;oat A single-preision oating 4 bytes oat temp;point value temp = 6.2;double A double-preision oating 8 bytes double sun temp;point value sun temp =13600000.0;har Charater 1 byte har letter;letter= `a';Table 7: C fundamental data types.
Otober 1, 2007 Page 32/71

Workpakage 1, Deliverable 1.1<datatype><name>employee</name><des>Used to hold employee information</des><var><type>int</type><name>id</name></var><var><type>oat</type><name>wage</name></var></datatype>Table 8: Example of the employee data type.4.3.4 Data StruturesTo failitate more strutured data representation, new ustom data typesan also be reated. These ustom data types an allow C data types aswell, and they an be referred to by their own user de�ned names. Table 8gives an example of a ustom data type alled employee whih holds an `id'of type int and a `wage' of type oat.The <des> </des> tags an be used to allows users to desribe thedata type whih an later be extrated to be used for desription in thedoumentation. These ustom data types an now be used in the same wayas the C data types.4.3.5 ArrayVariables an also be de�ned as a list whih an also be represented as anarray. The array an either be stati, with prede�ned size, or dynami,allowing its size to hange. To de�ne a stati array, use the C syntax whihis to plae square brakets after the variable name that ontains the arraysize. So for a list of six variables of type oat alled wage, the de�nitionwould be (Table 9):<var><type>oat</type><name>wage[6℄</name></var>Table 9: De�ning an array of prede�ned size.Dynami arrays have their own speial data type provided by the XMML.For any data type name just add ` array' at the end. Therefore to hangethe stati array above to a dynami array, take away the square braketsand size and add ` array' to the data type name (Table 10):<var><type>oat array</type><name>wage</name></var>Table 10: De�ning a dynami array.4.3.6 XMML ComponentsXMML omponents are the representation of how models are desribed inits spei�ation. The desription omprises of the agents involved, the agentharateristis and the messages being used to ommuniate among theagents.Otober 1, 2007 Page 33/71

Workpakage 1, Deliverable 1.1<!�� � � � � � �� X-mahine Agent - Firm � � � � � � � � � � �� ><xmahine><name>Firm</name><!���������Variables������������ ><!�� All variables used by Firm are delaredhere to alloate them in memory �� ><memory><var><type>int</type><name>id</name></var><var><type>double</type><name>value</name></var></memory><!����������� De�ning funtions ������� ><funtions><funtion><name>Firm 1</name></funtion><funtion><name>Firm 3</name></funtion></funtions></xmahine> Table 11: Example of a Firm Agent.<messages><!���Message for stok of the �rm����� ><message><name>�rm stok</name><note>This message lets the people know how muh stokthe �rm they are buying from has left.</note><var><type>int</type><name>�rm id</name></var><var><type>int</type><name>stok</name></var></message></messages>Table 12: Example of desribing messages.4.3.7 AgentsEvery agent is a X-mahine. This depits that the agent would thus ontaina set of memory variables whih it an update during its funtions. Theagent would also have a set of funtions it an perform. The atual funtionde�nition is not part of XMML omponent and is de�ned separately in a C�le. Table 11 gives an example of a �rm agent.4.3.8 MessagesMessages are used to ommuniate between the agents. All messages areenlosed in the <messages> </messages> tag and every message strutureis de�ned seperately. An example has been shown in Table 12.
Otober 1, 2007 Page 34/71

Workpakage 1, Deliverable 1.15 Model Creation5.1 Data struturesFrom the de�nitions in model XMML data strutures an be reated foragent memory and message memory.Agent and message memory is made up of variables of ertain data types.These an be:� C fundamental data types - int, oat, double, har (Table 7).� Abstrat data types made up of more than one C data type.� Stati arrays of C data types and abstrat data types.� Dynami arrays of C data types and abstrat data types.Dynami arrays are a built-in feature of the framework (for sending messagesin parallel the size of the array is needed). For any data type just add ` array'to the end, and aess it via the following funtions:� datatype array * my array = init datatype array();For initialising the array.� add datatype(my array, value);For adding an element to the array.� remove datatype(my array, index);For removing element at the spei�ed index.� my array->size;for returning the length of the array.� free datatype array(my array);For freeing the array.5.2 De�nition of XMML tagsThe model desription is given in the XML �le using XMML tags whih havebeen desribed previously. These tags are used by the xparser to reognisethe agent memory, the sort of variables being used and the funtions theyan perform.5.3 Handling Variables in Agent MemoryThe xparser o�ers a few funtions whih an be used to aess the variablesin the agent memory.� set variablename(value)The set funtion an be alled with in the agent funtion to hange thevalue of the variable in the memory. The following brakets ontain thevalue to be replaed with.Otober 1, 2007 Page 35/71

Workpakage 1, Deliverable 1.1� x=get variablename()The get funtion an be alled within the agent funtion and gets the valueof the variable wanted and saves it to the loal x value.5.4 Handling Messages� add messagename message(var1, var2,...)To add the message onto the message board. Var1, var2 symbolize the valueof the variables that the message arries.� messagename message=get �rst messagename message()The loal variable gets the �rst message to traverse through the message.� messagename message->var1The above ommand allows you to get the value of var1 from the message.� messagename message = get next messagename message(messagename message);The above ommand allows the loop to move onto the next message on theboard to read through. This would be used with a while loop until it returnsa null.5.5 Handling Dynami ArraysThe framework allows dynami arrays to be used within the memory of theagent. This is useful when the agent needs to maintain a list of a ontinuallygrowing nature of variables.� int array * Agents = init int array()The above ommand initializes the dynami array.� xmahine memory agentname * xmemory = urrent xmahine->xmahine agentname;To aess the memory the xmemory pointer needs to be used with the urrentxmahine to point to the xmahine being aessed. The pointer would be ofthe type of the agent being aessed.� reset int array(xmemory->dynamivariablename);When aessing the dynami variable array we an use the reset to reset thearray.� add int(xmemory->dynamivariablename, messagename message->var1);To add to the dynami array list use the above ommand with the name ofthe array given �rst and the value after the omma.� xmemory->dynamivariablename->array[value℄Values in the dynami array an be aessed similar to the way elements inan array would be aessed.Otober 1, 2007 Page 36/71

Workpakage 1, Deliverable 1.1� xmemory->dynamivariablename->sizeThe size an be used to return the value of the size of the array. This wouldbe hanging ontinually as it is not �xed.� free int array(agents);To free the list of the agents used.5.6 Outputs Produed by the XparserThe Xparser produes simulation soure ode �les, a ompilation sript,and a doumentation options �le. Also produed are two graphs that showfuntion dependenies (see Figures 12, 13 for examples) and funtion orderwith ommuniation layers (see Figure 14 for an example).

Otober 1, 2007 Page 37/71

Workpakage 1, Deliverable 1.16 Understanding Eonomi Models: The C�SModelThe �rst e�ort to reate an eonomi model entred around the C�S projetwith papers in progress provided by the Anona unit [5℄. The model de-sribes a sequential eonomy populated with large numbers of �rms andworkers/onsumers who partake on markets for homogeneous non-storableonsumption goods and labour servies.Newly introdued into the model was the idea of loality, at the heartof parallelising e�orts. Where agents were given a loation on a two di-mensional ontinuous plane. The distane between agents in this Cartesianspae a�eted if they ould ommuniate with eah other.6.1 Version 1: Without the Mall AgentFrom the paper desribing the C�S model, two agents Firm and Personwere implemented. Table 13 shows the relation between the event sequenedesribed in the paper and the order of the agent funtions. The importaneof this version is that only one agent funtion is used when �rms hire workersand persons buy goods. This is ahievable only beause these funtionsare run sequentially, and are therefore not parallelable. They depend onmessages sent by the running of the funtion on other agents, and is thereforea self-dependeny. The means the funtion needs to be run one after theother with messages sent available immediately to the onsequent funtionrun on other agents. The self-dependeny is shown in the funtions 'Firm 3'and 'Person 5' in the funtion dependeny diagram in Figure 12.6.2 Version 2: With the Mall AgentThe seond version inluded a new agent type (de�ned by the XMML inAppendix B). The mall agent was introdued to parallelise the labour andgoods markets and also to make the markets fairer as the heapest workersand goods would be evenly distributed rather than �rst ome take everythingapproah of version one. It also added loality of agents and the feature that�rms and persons had to hoose whih mall to go to for the labour marketand the goods market. The funtion dependeny graph of this model isshown in Figure 13. Figure 14 shows the ommuniation synhronisationpoints between the di�erent funtions of the agents. The diagonal linesrepresent the points at whih all funtions prior to it would need to be�nished for the simulation to proeed.6.2.1 GraphsThe graph in Figure 15 represents the pattern of behaviour between thegoods sold, prie and the prodution. when the prie inrease the goodssold redues whih auses a redution in the prodution. Simultaneously ifthe prie is low, more goods are sold ausing more prodution to take plae.Graph 16 shows the relation of wages, prie, prodution and goods sold.The prie of the goods denotes a prie ination when the prie has inreasedin the previous iteration. With an inrease in prie the wage of the workersOtober 1, 2007 Page 38/71

Workpakage 1, Deliverable 1.1

Funtion Event Firm Agent Person Agent(model) (paper)1 1,2,3 Cheks �nanial viability Does nothingCalulates produtionCalulates labour requiredSend prie ination message2 4 Does nothing Calulate total prie ination(from prie ination messages)Calulate new wageSend job appliation messages3 5 Hire workers Does nothing(from job appliation messagesand send hired messages)64 7a Calulate wage bill Chek hired messagesCalulate goods prie (update status if hired)(send prie message)Calulate produed goods(send stok amount message)5 7b Does nothing Spend inome on goods(using �rms prie and stokmessages, send updated stokmessages if buying)6 8 Calulate stok sold Add wage to inome(from stok messages) (for next iteration)Calulate revenueCalulate pro�tsTable 13: Sequene of events in the C�S model

Otober 1, 2007 Page 39/71

Workpakage 1, Deliverable 1.1
Firm_1

(58 lines)

Firm_3
(98 lines)

<depends on employed_message>

Person_2
(103 lines)

<depends on application_message>

Firm_4
(42 lines)

<depends on internal>

Firm_6
(50 lines)

<depends on firm_stock_message>
Person_5
(129 lines)

<depends on firm_stock_message>

<depends on priceinflation_message>

Person_4
(20 lines)

<depends on employed_message>

<depends on goods_price_message><depends on firm_stock_message>

<depends on firm_stock_message>

Person_6
(5 lines)

<depends on internal><depends on internal>

Figure 12: Funtion dependeny graph of C�S model version 1
Otober 1, 2007 Page 40/71

Workpakage 1, Deliverable 1.1

Goods_market
(113 lines)

Person_2
(32 lines)

<depends on consumer_spending>

Firm_3
(73 lines)

<depends on firm_stock_price>

Job_market
(87 lines)

Person_1
(77 lines)

<depends on application>

Firm_1
(83 lines)

<depends on vacancy>

Spread_awareness
(4 lines)

Person_4
(22 lines)

<depends on consumer_spent>

<depends on employed>

<depends on mall_location>

<depends on priceinflation>

Firm_4
(50 lines)

<depends on firm_stock>

<depends on employed>

<depends on mall_location>

Figure 13: Funtion dependeny graph of C�S model version 2
Otober 1, 2007 Page 41/71

Workpakage 1, Deliverable 1.1

Figure 14: Communiation synhronisation layers of C�S model version 2

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

Time

Price
Sold

Production

Figure 15: Graph showing the relation of prie, stok sold, and produtionOtober 1, 2007 Page 42/71

Workpakage 1, Deliverable 1.1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

Time

ave wage
ave price

ave production
ave sold

unemployment
vacancies

Figure 16: Graph showing the relation between average wage, prie, pro-dution, and the stok soldinrease as they demand higher wages. The goods sold and the produtionseem to have a mirror relation between them. When goods sold inreaseprodution inreases and vie versa. The interesting faet about this rela-tion is that the two seem to reah an equilibrium even if the are greaterutuations in the wage and the prie.

Otober 1, 2007 Page 43/71

Workpakage 1, Deliverable 1.17 Building Eurae by Markets7.1 The Labour Market ModelThe labour market was initially desribed in a doument by the UniversitaetBielefeld unit. This desribes a mathing algorithm between job seekers andvaanies in a six step approah. Initially eah step was assigned per day ina simulation.Step Firm Household1 Send Vaanies2 Read Vaanies3 Read appliations, rank, andsend job o�ers4 Read job o�ers,rank and sendjob aeptane5 Read job aeptanes6 Update wage o�er Update reservation wageTable 14: Six step labour market algorithm.At the Bielefeld working meeting the following were disussed:� Communiation between agents happen between agent funtions:{ One agent funtion sends a messages, and another agent funtionreads the message.� When one funtion depends on a message sent from another funtionthis is alled a ommuniation funtion dependeny.� When one funtion depends on the outome of another funtions withinin the same agent this is alled an internal funtion dependeny.� Funtion dependenies are not allowed to happen aross time steps(days).{ Beause eah day is taken to be a separate simulation run (thisremoves many problems).As a group task the funtion dependenies of agent funtions wheredisussed and written on a blak board. This started to produe pairingsof funtions where ommuniation needs to happen. These were written asarrows with a apital `C' to denote a ommuniation dependeny. The sixstep algorithm then beame four funtion ommuniation dependeny pairs,see Figure 18.After some disussions whih inluded time sales, �rm prodution fre-queny and overlap, it was deided that the whole labour market modelwould at ompletely every day. This allowed one funtion dependenygraph to desribe the total labour market algorithm. This was written upin XMML as a model desription, see Appendix C.Otober 1, 2007 Page 44/71

Workpakage 1, Deliverable 1.1

Figure 17: Blakboard diagrams desribing disussions on the labour marketmodel
H o u s e h o l d :

r e a d v a c a n c i e s

F i r m :
r e a d v a c a n c i e s

H o u s e h o l d :
s e n d a p p l i c a t i o n s

F i r m :
r e a d a p p l i c a t i o n s

F i r m :
s e n d j o b o f f e r s

H o u s e h o l d :
r e a d j o b o f f e r s

H o u s e h o l d :
s e n d j o b a c c e p t a n c e

F i r m :
r e a d j o b a c c e p t a n c e

1 2 3 4

CC C C

Figure 18: Funtion dependeny of the labour market day by dayOtober 1, 2007 Page 45/71

Workpakage 1, Deliverable 1.1

Firm_send_job_vacancies
(6 lines)

Firm_calc_randd_vacancies
(0 lines)

<internal>

Firm_read_job_applications
(2 lines)

Household_send_job_applications
(2 lines)

<message>

Firm_rank_applications
(2 lines)

<internal>

Firm_send_job_offers
(2 lines)

<internal>

Firm_read_job_responses
(2 lines)

Household_send_job_response
(2 lines)

<message>

Firm_send_application_rejections
(2 lines)

<internal>

Firm_update_wage_offer
(2 lines)

<internal>

Firm_request_market_data_hyp
(0 lines)

Firm_calc_randd_labour
(0 lines)

Market_Research_send_market_data_hyp
(0 lines)

<message>

Eurostat_read_send_high_wage
(0 lines)

<message>

<internal>

Firm_request_high_wage
(0 lines)

Household_read_job_vacancies
(2 lines)

<message>

Household_rank_job_vacancies
(2 lines)

<internal>

<internal>

Household_read_job_offers
(2 lines)

<message>

Household_rank_job_offers
(2 lines)

<internal>

<internal>

Household_read_application_rejection
(2 lines)

<message>

Household_update_wage_reservation
(2 lines)

<internal>

Market_Research_read_request_for_market_data_hyp
(0 lines)

<message>

<internal> <message>

Figure 19: Funtion dependeny graph of the labour market
Otober 1, 2007 Page 46/71

Workpakage 1, Deliverable 1.1
Eurostat_read_send_high_wage

(0 lines)

Firm_request_high_wage
(0 lines)

<depends on high_wage_request>

Market_Research_read_request_for_market_data_hyp_send
(0 lines)

Firm_request_market_data_hyp
(0 lines)

<depends on market_data_request>

Household_read_application_rejection_update_wage_reservation
(0 lines)

Household_read_job_offers_send_response
(0 lines)

<depends on internal>

Firm_read_job_applications_send_offer_or_rejection
(0 lines)

<depends on job_rejection>

<depends on job_offer>

Household_read_job_redundency_vacancies_send_applications
(0 lines)

Firm_calc_redundencies_vacancies_and_send
(0 lines)

<depends on redundency><depends on vacancies>

<depends on high_wage> <depends on market_data>

Firm_read_job_responses_update_wage_offer
(0 lines)

<depends on job_acceptance>

<depends on job_application>

Figure 20: Updated funtion dependeny graph of the labour market7.1.1 AgentsThe agent types used, their behaviour, and their foreast number in thelabour market are:� Household - looking for a job - 1000� Firm - looking to �ll vaanies - 100� Market Researh - sends market data to �rms - 1� Eurostat - sends high wage information to �rms - 1Whih orresponds to one region or NUTS-2 regions.7.1.2 Funtion LayoutAll internal funtion dependenies have been removed where they are theonly dependeny and the funtions merged. This reates a more ompatand easier to read model. It also saves memory spae as reating lists (ofvaanies, appliation, and job o�ers), ranking, and deleting them an all bedone loally in the same funtion without saving the list to agent memory.Otober 1, 2007 Page 47/71

Workpakage 1, Deliverable 1.1

Figure 21: The ommuniation synronisation layers of the labour marketmodel7.1.3 ImplementationThe labour market revolves around the monthly yle of �rms alulatingtheir monthly prodution. On the day of month they alulate this theyask the eurostat agent and market researh agent for additional informationthen alulate the number of employees they need. If they have too manyemployees they send redundany messages out, and if they have too fewthey send out vaany messages.7.1.4 Results and ConlusionsThe labour market model provides a test bed to researh:� Ways to design models{ Funtion dependenies� Ways to implement models{ Cluster internal funtions� Ways to run models eÆientlyRunning models eÆiently inludes alulating when best to run funtionsand where to plae ommuniation synhronisation points between fun-tions. Figure 21 lists the funtions on rows with ommuniation points asdiagonal lines. This is the order the funtions will be run in with ommu-niation handled at the red lines. The main eÆieny to be gained is tohave as few amount of ommuniation points as possible, as this is the mainbottle nek in parallel (the starting up of ommuniation between nodes).As part of handling messages eÆiently the message board will automat-ially organise messages in relation to the �lters agents use to read messages,for example with a distane metri.Otober 1, 2007 Page 48/71

Workpakage 1, Deliverable 1.17.2 The Asset Market ModelAlso disussed at the Bielefeld work meeting, the asset market is still underonstrution. Figures 23 and 24 depit the blok diagrams of the marketand how it funtions5.7.2.1 Agent PopulationHousehold Agent. Invests in assets.Firm Agent. Issues assets (stoks and bonds).Finanial Advisor Agent. Gives advie to households on the past per-formane of a set of asset alloation rules. It holds a database of suhrules in its internal memory.Asset Management Company. A �rm that manages Exhange TradedFunds (ETFs) and/or hedge funds. Like other �rms, the Finanial Ad-visor distributes its pro�ts to its shareholders. There an be multipleFinanial Advisors.Clearinghouse Agent. Reads limit order messages. Computes transa-tion pries.LimitOrderBook Agent. Reads limit order messages. Computes trans-ation pries.7.2.2 Internal DependeniesA few internal dependenies in the household and the �rm agent have beenidenti�ed. These have been depited in the dotty diagram in Figure 22.7.2.3 ImplementationThe asset market works on a monthly basis as depited in Figure 23. Thediagram shows that it starts on the �rst day of the month and ontinuesnormal proedure for the rest of the month. The �rst olumn, however,depits how the asset market onnets to the markets outside its own realm,like the `Consumption Goods Market (CGM)' and external agents as thebanks and the �rms. A few implementation issues were enountered aslisted below:Problem of Days. Figure 23 shows how some of the funtions of the assetmarket have to be run on one day on the month with the rest of thefuntions running as normal.This gives rise to the disussion on how long is one simulationsupposed to be depited for. To make it default, USFD has proposedto make the length of one simulation to depit one day.5These �gures are a result of the disussion at the Bielefeld work meeting and onvertedinto �gurative form by Sander van der Hoog from the GREQAM unit.Otober 1, 2007 Page 49/71

Workpakage 1, Deliverable 1.1There is another issue on how the date of the day will be hekedas some of the funtions are dependent on whih day of the month it is.Disussions with the STFC unit have led to a few onlusions of eitherinluding a date hek in every funtion desription or the preseneof a date agent allowing some funtions to be exeuted. Further testswill be done to �nd the most eÆient manner of doing this.Internal and message dependenies. Figure 24 depits the funtion de-pendenies to be of two types - internal or message. As previouslydisussed on ommuniation dependenies, internal represents depen-deny on funtions within the agent. Thus some of these funtionsan be ombined into one. Combining funtions allows possibly moreeÆient use of memory and a more readable funtion dependenygraphs, but removes the possibility of parallel exeution (by futureuse of threads) and the ease of testing smaller funtions. The externalmessage dependeny , is when the agent depends on another agent fordata. Therefore these would be the synhronisation point at whihprior to it all agents would have �nished working and wait to moveinto the next blok. The importane of reduing the layers to messagedependenies redues the synhronisation points to be enountered.this redues omputational overhead in the model.7.2.4 Current WorkThe model has already been designed and implemented in MATLAB by theGenoa unit in ollaboration with the GREQAM unit and is going to beonverted into C language for implementation using the framework.

Otober 1, 2007 Page 50/71

Workpakage1,Deliverable1.1
HouseholdCalculateGrossIncome

(2 lines)

HouseholdCalculateMonthlyTaxes
(2 lines)

<depends on internal>

HouseholdCalculateNetIncome
(2 lines)

<depends on internal>

HouseholdCalculateTotalBudget
(2 lines)

<depends on internal>

HouseholdCalculateAssetWealth
(2 lines)

HouseholdCalculateCashOnHands
(2 lines)

<depends on internal><depends on internal>

HouseholdCalculateConsumptionBudget
(2 lines)

<depends on internal>

HouseholdCalculateFinancialNeedsMonthly
(2 lines)

<depends on internal>

HouseholdUpdateAssetPortfolio
(2 lines)

HouseholdCalculateFinancialNeedsDaily
(2 lines)

<depends on internal>

HouseholdEntryDecision
(2 lines)

<depends on internal><depends on internal>

HouseholdCalculateAssetBudget
(2 lines)

<depends on internal>

HouseholdCalculateFirmBondOrders
(2 lines)

<depends on internal>

HouseholdCalculateGovernmentBondOrders
(2 lines)

<depends on internal>

HouseholdCalculateFirmStockOrders
(2 lines)

<depends on internal>

FirmCalculateIncomeStatement
(72 lines)

FirmCalculateFinancialPolicies
(2 lines)

<depends on internal>

FirmCalculateFirmStockOrders
(2 lines)

<depends on internal>

FirmCalculateFirmBondOrders
(2 lines)

<depends on internal>

FirmUpdateOutstandingAssets
(2 lines)

<depends on internal> <depends on internal>

FirmApplyForBankLoan
(2 lines)

<depends on internal>

ClearingHouseComputeTransactions
(2 lines)

LimitOrderBookComputeTransactions
(2 lines)Figure 22: Dotty diagram of household and �rms.

Otober1,2007
Page51/71

Workpakage1,Deliverable1.1
F i r m s e n d s
s e n d s w a g e p a y m e n t m s g
s e n d s d i v i d e n d p a y m e n t m s g
s e n d s b o n d c o u p o n p a y m e n t m s g

{ M e s s a g e }

H o u s e h o l d
c a l c f i r m _ b o n d _ o r d e r s
c a l c g o v _ b o n d _ o r d e r s
c a l c f i r m _ s t o c k _ o r d e r s

{ I n t e r n a l }

{ M e s s a g e }

{ I n t e r n a l }

D a y 1

H o u s e h o l d
s e n d u p d a t e _ s a v i n g s _ a c c o u n t

{ I n t e r n a l }

{ M e s s a g e }

H o u s e h o l d
c a l c g r o s s _ i n c o m e
c a l c m o n t h l y _ t a x e s
c a l c n e t _ i n c o m e
c a l c t o t a l _ b u d g e t
c a l c a s s e t _ w e a l t h _ v a l u e
c a l c c a s h _ o n _ h a n d s

H o u s e h o l d
c a l c c o n s u m p t i o n _ l e f t o v e r _ b u d g e t
(u p d a t e s i n t e r n a l m e m o r y v a r i a b l e)

H o u s e h o l d
c a l c c o n s u m p t i o n b u d g e t

{ I n t e r n a l }

C o n s u m p t i o n _ b u d g e t
(i n p u t t o C G M)

H o u s e h o l d
c a l c f i n a n c i a l n e e d s m o n t h l y

{ I n t e r n a l }

H o u s e h o l d
s e n d s u p d a t e _ s a v i n g s _ a c c o u n t _ m s g

H o u s e h o l d
s e n d f i r m _ b o n d _ o r d e r _ m s g
s e n d g o v _ b o n d _ o r d e r _ m s g
s e n d f i r m _ s t o c k _ o r d e r _ m s g

C l e a r i n g h o u s e / L i m i t - o r d e r - b o o k
r e a d f i r m _ b o n d _ o r d e r _ m s g
r e a d g o v _ b o n d _ o r d e r _ m s g
r e a d f i r m _ s t o c k _ o r d e r _ m s g

C l e a r i n g h o u s e / L i m i t - o r d e r - b o o k
s e n d f i r m _ b o n d _ t r a n s a c t i o n _ m s g
s e n d g o v _ b o n d _ t r a n s a c t i o n _ m s g
s e n d f i r m _ s t o c k _ t r a n s a c t i o n _ m s g

C l e a r i n g h o u s e / L i m i t - o r d e r - b o o k
c a l c f i r m _ b o n d _ t r a n s a c t i o n s
c a l c g o v _ b o n d _ t r a n s a c t i o n s
c a l c f i r m _ s t o c k _ t r a n s a c t i o n s

{ I n t e r n a l }

H o u s e h o l d
r e a d f i r m _ b o n d _ t r a n s a c t i o n _ m s g
r e a d g o v _ b o n d _ t r a n s a c t i o n _ m s g
r e a d f i r m _ s t o c k _ t r a n s a c t i o n _ m s g

{ M e s s a g e }

B a n k
r e a d u p d a t e _ s a v i n g s _ a c c o u n t

A t s t a r t o f M o n t h E v e r y D a y

{ I n t e r n a l }

H o u s e h o l d
r e a d s w a g e p a y m e n t s
r e a d s d i v i d e n d p a y m e n t s
r e a d s b o n d p a y m e n t s

D e t e r m i n e d o u t s i d e o f t h e a s s e t m a r k e t

H o u s e h o l d
e n t r y _ d e c i s i o n

{ I n t e r n a l }

H o u s e h o l d
c a l c a s s e t b u d g e t

{ I n t e r n a l }

H o u s e h o l d
c a l c u p d a t e a s s e t _ p o r t f o l i o
c a l c f i n a n c i a l _ n e e d s _ d a i l y

B a n k
r e a d u p d a t e _ s a v i n g s _ a c c o u n t

{ M e s s a g e }

F i r m
P a y o u t f u n c t i o n

(o u t p u t f r o m L a b o r M a r k e t)

B a n k
S a v i n g s a c c o u n t s u p d a t i n g

(i n p u t f o r A s s e t M a r k e t)

H o u s e h o l d
p o r t f o l i o _ s e l e c t i o n

{ I n t e r n a l }

{ I n te rna l } { I n te rna l }

Figure 23: Funtion dependeny graph for the Finanial Management Role of the Household.

Otober1,2007
Page52/71

Workpakage1,Deliverable1.1
Step 1. Update performance Step 2. Send information, select rule Step 3. Apply the selected rule

Household
send rule_performance

Financial Advisor
read rule_performance

Financial Advisor
update rule_performance

Financial Advisor
send all_rule_performances

Household
read all_rule_performances

Household
select_asset_allocation_rule

Household
read rule_details

Household

calc target_asset_portfolio
calc firm_stock_limit_orders
calc firm_bond_limit_orders
calc gov_bond_limit_orders

Household

send firm_stock_limit_orders
send firm_bond_limit_orders
send gov_bond_limit_orders

Asset market agent

read firm_stock_limit_orders
read firm_bond_limit_orders
read gov_bond_limit_orders

{Message}

{Internal}

{Message}

{Internal}

{Internal}

{Message}

{Internal}

{Internal}

{Internal}

Figure 24: Funtion dependeny graph for the Portfolio Seletion Algorithm of the Household.

Otober1,2007
Page53/71

Workpakage 1, Deliverable 1.1A XMML Shema<?xml version="1.0"?><xs:shema xmlns:xs="http://www.w3.org/2001/XMLShema"><xs:element name="xmahine_agent_model"><xs:omplexType><xs:sequene><xs:element name="name" type="xs:string"/><xs:element name="author" type="xs:string"/><xs:element name="date" type="xs:string"/><xs:element name="notes" type="xs:string"/><xs:element name="environment" minOurs="0" maxOurs="1"><xs:omplexType><xs:sequene><xs:element name="onstants" minOurs="0" maxOurs="1"><xs:omplexType><xs:sequene><xs:element name="var" minOurs="0"><xs:omplexType><xs:sequene><xs:element name="type" type="xs:string"/><xs:element name="name" type="xs:string"/></xs:sequene></xs:omplexType></xs:element></xs:sequene></xs:omplexType></xs:element><xs:element name="funtions" minOurs="0" maxOurs="1"><xs:omplexType><xs:sequene><xs:element name="file" type="xs:string" minOurs="1"></xs:element></xs:sequene></xs:omplexType></xs:element><xs:element name="datatypes" minOurs="0" maxOurs="1"><xs:omplexType><xs:sequene><xs:element name="datatype" minOurs="1"><xs:omplexType><xs:sequene><xs:element name="name" type="xs:string"/>Otober 1, 2007 Page 54/71

Workpakage 1, Deliverable 1.1<xs:element name="des" type="xs:string"/><xs:element name="var" minOurs="1"><xs:omplexType><xs:sequene><xs:element name="type" type="xs:string"/><xs:element name="name" type="xs:string"/></xs:sequene></xs:omplexType></xs:element></xs:sequene></xs:omplexType></xs:element></xs:element></xs:sequene></xs:omplexType></xs:element></xs:sequene></xs:omplexType></xs:element><xs:element name="xmahine" minOurs="1"><xs:omplexType><xs:sequene><xs:element name="name" type="xs:string"/><xs:element name="memory"><xs:omplexType><xs:sequene><xs:element name="var" minOurs="1"><xs:omplexType><xs:sequene><xs:element name="type" type="xs:string"/><xs:element name="name" type="xs:string"/></xs:sequene></xs:omplexType></xs:element></xs:sequene></xs:omplexType></xs:element><xs:element name="funtions" minOurs="0" maxOurs="1"><xs:omplexType><xs:sequene><xs:element name="funtion" minOurs="1">Otober 1, 2007 Page 55/71

Workpakage 1, Deliverable 1.1<xs:omplexType><xs:sequene><xs:element name="name" type="xs:string"/><xs:element name="depends" minOurs="0"><xs:omplexType><xs:sequene><xs:element name="name" type="xs:string"/><xs:element name="type" type="xs:string"/></xs:sequene></xs:omplexType></xs:element></xs:sequene></xs:omplexType></xs:element></xs:sequene></xs:omplexType></xs:element></xs:sequene></xs:omplexType></xs:element><xs:element name="messages"><xs:omplexType><xs:sequene><xs:element name="message" minOurs="1"><xs:omplexType><xs:sequene><xs:element name="name" type="xs:string"/><xs:element name="var" minOurs="1"><xs:omplexType><xs:sequene><xs:element name="type" type="xs:string"/><xs:element name="name" type="xs:string"/></xs:sequene></xs:omplexType></xs:element></xs:sequene></xs:omplexType></xs:element></xs:sequene></xs:omplexType></xs:element>Otober 1, 2007 Page 56/71

Workpakage 1, Deliverable 1.1<xs:element name="iteration_end_ode" minOurs="0"><xs:omplexType><xs:sequene><xs:element name="ode" type="xs:string"/></xs:sequene></xs:omplexType></xs:element></xs:sequene></xs:omplexType></xs:element></xs:shema>

Otober 1, 2007 Page 57/71

Workpakage 1, Deliverable 1.1B C�TS Model<?xml version="1.0" enoding="ISO-8859-1"?><xmahine_agent_model><name>C�S Bis Model</name><author>Simon Coakley and Mariam Kiran</author><date>011006</date><!--*****Environment values and funtions *******--><environment><funtions><file>funtions.</file></funtions></environment><!--******* X-mahine Agent - Firm ******--><xmahine><name>Firm</name><!-- Variables --><!-- All variables used by Firm are delared hereto alloate them in memory --><memory><var><type>int</type><name>id</name></var><var><type>double</type><name>value</name></var><var><type>double</type><name>a</name></var><var><type>double</type><name>produtivity</name></var><var><type>double</type><name>profits</name></var><var><type>double</type><name>f</name></var><var><type>double</type><name>prodution</name></var><var><type>int</type><name>goodsprodued</name></var><var><type>int</type><name>stok</name></var><var><type>int</type><name>sold</name></var><var><type>int</type><name>labour</name></var><var><type>int</type><name>numberofworkers</name></var><var><type>double</type><name>prie</name></var><var><type>double</type><name>oldprie</name></var><var><type>double</type><name>prieinflation</name></var><var><type>double</type><name>sprie</name></var><var><type>double</type><name>lprie</name></var><var><type>int_array</type><name>workerid</name></var><var><type>double_array</type><name>workerwage</name></var><var><type>double</type><name>avewage</name></var><var><type>int_array</type><name>mall_id</name></var><var><type>int</type><name>mall_vaany</name></var><var><type>int</type><name>mall_goods</name></var><var><type>double</type><name>posx</name></var><var><type>double</type><name>posy</name></var></memory><!-- Defining funtions --><funtions><funtion><name>Firm_1</name><depends>Otober 1, 2007 Page 58/71

Workpakage 1, Deliverable 1.1<name>Spread_awareness</name><type>mall_loation</type></depends></funtion><funtion><name>Firm_3</name><depends><name>Job_market</name><type>employed</type></depends></funtion><funtion><name>Firm_4</name><depends><name>Goods_market</name><type>firm_stok</type></depends></funtion></funtions></xmahine><!--*********** End of Agent - Firm ***************--><!--******* X-mahine Agent - Person ************--><xmahine><name>Person</name><!-- Variables for the Person --><memory><var><type>int</type><name>id</name></var><var><type>double</type><name>savings</name></var><var><type>double</type><name>wage</name></var><var><type>int</type><name>firmid</name></var><var><type>int</type><name>mall_appliation</name></var><var><type>int</type><name>mall_shopping</name></var><var><type>int_array</type><name>mall_id</name></var><var><type>double</type><name>posx</name></var><var><type>double</type><name>posy</name></var></memory><!-- Defining funtions --><funtions><funtion><name>Person_1</name><depends><name>Firm_1</name><type>prieinflation</type></depends><depends><name>Spread_awareness</name><type>mall_loation</type></depends></funtion><funtion><name>Person_2</name><depends><name>Job_market</name><type>employed</type></depends></funtion><funtion><name>Person_4</name>Otober 1, 2007 Page 59/71

Workpakage 1, Deliverable 1.1<depends><name>Goods_market</name><type>onsumer_spent</type></depends></funtion></funtions></xmahine><!--****** End of Agent - Person ************--><!--******* X-mahine Agent - Mall **********--><xmahine><name>Mall</name><!-- Variables for the Mall --><memory><var><type>int</type><name>id</name></var><var><type>int_array</type><name>app_person_ids</name></var><var><type>double_array</type><name>app_person_wages</name></var><var><type>int_array</type><name>sell_firm_ids</name></var><var><type>int_array</type><name>sell_firm_stoks</name></var><var><type>double</type><name>posx</name></var><var><type>double</type><name>posy</name></var></memory><!-- Defining funtions --><funtions><funtion><name>Spread_awareness</name></funtion><funtion><name>Job_market</name><depends><name>Firm_1</name><type>vaany</type></depends><depends><name>Person_1</name><type>appliation</type></depends></funtion><funtion><name>Goods_market</name><depends><name>Firm_3</name><type>firm_stok_prie</type></depends><depends><name>Person_2</name><type>onsumer_spending</type></depends></funtion></funtions></xmahine><!--********* End of Agent - Mall *************--><!--** Messages being posted by the agents to ommuniate **--><messages><!-- Message posted to reord the prie inflation --><message><name>mall_loation</name><note>Mall loation message</note><var><type>int</type><name>mall_id</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var>Otober 1, 2007 Page 60/71

Workpakage 1, Deliverable 1.1<var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><!-- Message posted to reord the prie inflation --><message><name>prieinflation</name><note>This message is posted by the firm when it alulates the next prieof the goods. The message is read by the workers to help alulate theirnew wages beause they onsider the prie inflation to do this</note><var><type>int</type><name>firm_id</name></var><var><type>double</type><name>prieinflation</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><!-- Message for applying to firm --><message><name>appliation</name><note>This message is posted by the worker that it is applying to thisfirm for work with what wage he wants and where he worked before</note><var><type>int</type><name>person_id</name></var><var><type>double</type><name>person_wage</name></var><var><type>int</type><name>mall_id</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><!-- Message for firm vaanies --><message><name>vaany</name><note>Message for firm vaanies</note><var><type>int</type><name>firm_id</name></var><var><type>int</type><name>vaanies</name></var><var><type>int</type><name>mall_id</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><!-- Message that the person has been employed --><message><name>employed</name><note>This message is sent out by the firms to let the workersknow who are employed and by whom</note><var><type>int</type><name>person_id</name></var><var><type>double</type><name>person_wage</name></var><var><type>int</type><name>firm_id</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message>Otober 1, 2007 Page 61/71

Workpakage 1, Deliverable 1.1<!-- Message for onsumer spending --><message><name>onsumer_spending</name><note>Message to Mall outlet indiating how muh to spend</note><var><type>int</type><name>person_id</name></var><var><type>double</type><name>spending</name></var><var><type>int</type><name>mall_id</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><!-- Message for onsumer spent --><message><name>onsumer_spent</name><note>Message from Mall outlet indiating how muh has been spent</note><var><type>int</type><name>person_id</name></var><var><type>double</type><name>spent</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><!-- Message for stok of the firm --><message><name>firm_stok</name><note>This message lets the people know how muh stok the firmthey are buying from has left.</note><var><type>int</type><name>firm_id</name></var><var><type>int</type><name>stok</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><!-- Message of stok and prie from firm to mall --><message><name>firm_stok_prie</name><note>This message lets the people know how muh stok the firmthey are buying from has left.</note><var><type>int</type><name>firm_id</name></var><var><type>int</type><name>stok</name></var><var><type>double</type><name>prie</name></var><var><type>int</type><name>mall_id</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message></messages><!--**** End of Messages ******--></xmahine_agent_model>Otober 1, 2007 Page 62/71

Workpakage 1, Deliverable 1.1C Labour Market Model<?xml version="1.0" enoding="ISO-8859-1"?><xmahine_agent_model><name>Labour Market</name><author>Eurae</author><date>290507</date><!--****** Environment values and funtions *******--><environment><funtions><file>Household_funtions.</file><file>Firm_funtions.</file><file>Eurostat_funtions.</file><file>Market_Researh_funtions.</file><file>my_library_funtions.</file></funtions><datatype><name>employee</name><des>Used to hold employee information in firms</des><var><type>int</type><name>id</name></var><var><type>int</type><name>wage</name></var></datatype><datatype><name>stok</name><des>Used by households to hold stok information</des><var><type>int</type><name>firm_id</name></var><var><type>int</type><name>prie</name></var></datatype><datatype><name>vaany</name><des>Used by households to hold vaany information</des><var><type>int</type><name>firm_id</name></var><var><type>int</type><name>wage</name></var></datatype><datatype><name>job_appliation</name><des>Used by firms to hold job appliations</des><var><type>int</type><name>worker_id</name></var><var><type>int</type><name>wage</name></var></datatype><datatype><name>job_offer</name><des>Used by households and firms to hold job offers</des><var><type>int</type><name>id</name></var><var><type>int</type><name>wage</name></var></datatype></environment><!--****** X-mahine Agent - Firm **************--><xmahine><name>Firm</name><!-- Variables -->Otober 1, 2007 Page 63/71

Workpakage 1, Deliverable 1.1<!-- All variables used by Firm are delared here toalloate them in memory --><memory><var><type>int</type><name>id</name></var><var><type>employee_array</type><name>employees</name></var><var><type>int</type><name>wage_offer</name></var><var><type>int</type><name>tehnology</name></var><var><type>int</type><name>no_employees</name></var><var><type>int</type><name>vaanies</name></var><var><type>int</type><name>day_of_month_to_at</name></var><var><type>double</type><name>posx</name></var><var><type>double</type><name>posy</name></var></memory><!-- Defining funtions --><funtions><funtion><name>Firm_read_job_appliations_send_offer_or_rejetion</name><depends><name>Household_read_job_redundeny_vaanies_send_appliations</name><type>job_appliation</type></depends></funtion><funtion><name>Firm_read_job_responses_update_wage_offer</name><depends><name>Household_read_job_offers_send_response</name><type>job_aeptane</type></depends></funtion><funtion><name>Firm_request_market_data_hyp</name></funtion><funtion><name>Firm_al_redundenies_vaanies_and_send</name><depends><name>Market_Researh_read_request_for_market_data_hyp_send</name><type>market_data</type></depends><depends><name>Eurostat_read_send_high_wage</name><type>high_wage</type></depends></funtion><funtion><name>Firm_request_high_wage</name></funtion></funtions></xmahine><!--********* End of Agent - Firm ************************--><!--****** X-mahine Agent - Household *******************--><xmahine><name>Household</name><!-- Variables for the Household --><memory>Otober 1, 2007 Page 64/71

Workpakage 1, Deliverable 1.1<var><type>int</type><name>id</name></var><var><type>int</type><name>wage</name></var><var><type>int</type><name>wage_reservation</name></var><var><type>int</type><name>skills</name></var><var><type>int</type><name>employee_firm_id</name></var><var><type>double</type><name>posx</name></var><var><type>double</type><name>posy</name></var></memory><!-- Defining funtions --><funtions><funtion><name>Household_read_job_redundeny_vaanies_send_appliations</name><depends><name>Firm_al_redundenies_vaanies_and_send</name><type>vaanies</type></depends><depends><name>Firm_al_redundenies_vaanies_and_send</name><type>redundeny</type></depends></funtion><funtion><name>Household_read_job_offers_send_response</name><depends><name>Firm_read_job_appliations_send_offer_or_rejetion</name><type>job_offer</type></depends></funtion><funtion><name>Household_read_appliation_rejetion_update_wage_reservation</name><depends><name>Firm_read_job_appliations_send_offer_or_rejetion</name><type>job_rejetion</type></depends><depends><name>Household_read_job_offers_send_response</name><type>internal</type></depends></funtion></funtions></xmahine><!--**** End of Agent - Household ****************************--><xmahine><name>Market_Researh</name><!-- Variables for the Market_Researh --><memory><var><type>int</type><name>id</name></var><var><type>double</type><name>posx</name></var><var><type>double</type><name>posy</name></var></memory><!-- Defining funtions --><funtions><funtion>Otober 1, 2007 Page 65/71

Workpakage 1, Deliverable 1.1<name>Market_Researh_read_request_for_market_data_hyp_send</name><depends><name>Firm_request_market_data_hyp</name><type>market_data_request</type></depends></funtion></funtions></xmahine><xmahine><name>Eurostat</name><memory><var><type>int</type><name>id</name></var><var><type>double</type><name>posx</name></var><var><type>double</type><name>posy</name></var></memory><!-- Defining funtions --><funtions><funtion><name>Eurostat_read_send_high_wage</name><depends><name>Firm_request_high_wage</name><type>high_wage_request</type></depends></funtion></funtions></xmahine><!--* Messages being posted by the agents to ommuniate *--><messages><message><name>high_wage_request</name><var><type>int</type><name>firm_id</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><message><name>high_wage</name><var><type>int</type><name>firm_id</name></var><var><type>int</type><name>high_wage</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><message><name>market_data_request</name><var><type>int</type><name>firm_id</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var>Otober 1, 2007 Page 66/71

Workpakage 1, Deliverable 1.1<var><type>double</type><name>z</name></var></message><message><name>market_data</name><var><type>int</type><name>firm_id</name></var><var><type>int</type><name>market_data</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><message><name>vaanies</name><var><type>int</type><name>firm_id</name></var><var><type>int</type><name>firm_vaanies</name></var><var><type>int</type><name>firm_wage</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><message><name>job_appliation</name><var><type>int</type><name>firm_id</name></var><var><type>int</type><name>worker_id</name></var><var><type>int</type><name>wage</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><message><name>job_offer</name><var><type>int</type><name>worker_id</name></var><var><type>int</type><name>firm_id</name></var><var><type>int</type><name>wage</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><message><name>job_aeptane</name><var><type>int</type><name>firm_id</name></var><var><type>int</type><name>worker_id</name></var><var><type>int</type><name>wage</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var>Otober 1, 2007 Page 67/71

Workpakage 1, Deliverable 1.1<var><type>double</type><name>z</name></var></message><message><name>job_rejetion</name><var><type>int</type><name>worker_id</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message><message><name>redundeny</name><var><type>int</type><name>worker_id</name></var><var><type>double</type><name>range</name></var><var><type>double</type><name>x</name></var><var><type>double</type><name>y</name></var><var><type>double</type><name>z</name></var></message></messages><!--**** End of Messages *****--></xmahine_agent_model>

Otober 1, 2007 Page 68/71

Workpakage 1, Deliverable 1.1Referenes[1℄ T Balanesu, AJ Cowling, M Georgesu, M Holombe, and C Vertan. Com-muniating stream X-mahines are no more than X-mahines. Journal of Uni-versal Computer Siene, 5(9):494{507, September 1999.[2℄ J Barnard, J Whitworth, and M Woodward. Communiating x-mahines.Information and Software Tehnology, 38(6):401{407, June 1996.[3℄ B. Bauer, J.P. Muller, and J. Odell. Agent uml: a formalism for speifyingmultiagent software systems. International Journal on Software Engineeringand Knowledge Engineering (IJSEKE), 1(2), 2001.[4℄ B. Bauer, J. Odell, and H. Parunak. Extending uml for agents. In G. Wagner,Y. Lesperane, and E. Yu, editors, Proeedings of the Agent-Oriented Infor-mation Systems Workshop (AOIS), Austin, pages 3 { 17, 2000.[5℄ M. Catalano, F. Clementi, Domenio Delli Gatti, C. Di Guilmi, EdoardoGa�eo, Mauro Gallegati, Gianfrano Giulioni, M. Napoletano, AntonioPalestrini, and A. Russo. The C�S projet. EURACEWorking Paper, Septem-ber 22 2006.[6℄ Simon Coakley. Formal Software Arhiteture for Agent-Based Modelling inBiology. PhD thesis, Department of Computer Siene, University of SheÆeld,SheÆeld, UK, 2007.[7℄ Samuel Eilenberg. Automata, languages and mahines. Vol. A. AademiPress, London, 1974.[8℄ Mike Holombe. Towards a formal desription of intraellular biohemialorganisation. Tehnial Report CS-86-1, Dept of Computer Siene, Universityof SheÆeld, SheÆeld, UK, 1986.[9℄ Bernardo A. Huberman and Natalie S. Glane. Evolutionary games and om-puter simulations. Proeedings of the National Aademy of Sienes, 90:7716{ 7718, August 1993.[10℄ M. Huget. Agent uml lass diagrams revisited. In B. Bauer, K. Fisher,J. Muller, and B. Rumpe, editors, Proeedings of Agent Tehnology and Soft-ware Engineering (AgeS), Erfurt, Germany, 2002.[11℄ Adrian Jakson. Single sided ommuniation on hpx. Tehnial ReportHPCxTR0305, University of Edinburgh, Otober 2003.[12℄ Gilbert Layok. The Theory and Pratie of Spei�ation Based SoftwareTesting. PhD thesis, Dept of Computer Siene, University of SheÆeld,SheÆeld, UK, 1993.[13℄ R.J. Pryor, D. Marozas, M. Allen, O. Paananen, K. Hiebert-Dodd, and R.K.Reinert. Modeling requirements for simulating the e�ets of extreme ats ofterrorism: A white paper. Report SAND98-2289, SANDIA National Labora-tories, 1998.[14℄ Leigh Tesfatsion. Agent based omputational eonomis, July 2007. <Online:http://www.eon.iastate.edu/tesfatsi/ae.htm>.[15℄ Bielefeld University. Capital, onsumption goods, and labour markets in eu-rae. EURACE Working paper WP5.1, April 2006.[16℄ Sander van der Hoog and Christophe Deissenberg. Modelling requirements forEURACE. EURACE Working paper WP2.1, January 2007.Otober 1, 2007 Page 69/71

Workpakage 1, Deliverable 1.1[17℄ Sander van der Hoog and Christophe Deissenberg. Modelling spei�ations forEURACE. EURACE Working paper WP2.2, January 2007.[18℄ Boris Vaysburg, Luay H. Tahat, and Bogdan Korel. Dependene analysisin redution of requirement based test suites. In ISSTA '02: Proeedings ofthe 2002 ACM SIGSOFT international symposium on Software testing andanalysis, pages 107{111, New York, NY, USA, 2002. ACM Press.[19℄ G. Weisbuh, A. Kirman, and A. Herreiner. Market organization and tradingrelationships. The Eonomi Journal, 110:411 { 436, 2000.

Otober 1, 2007 Page 70/71

Workpakage 1, Deliverable 1.1GlossaryEurostat : The statistial arm of the European Commission.HPC : High Performane Computer { parallel superomputer or omputer luster.Node : Any single omputer onneted to a network. Superomputer lusters aremany up of many nodes.NUTS-2 : Nomenlature of Territorial Units for Statistis { Used by Eurostat forE.C. regional statistis, level 2 being the region level.UML : Uni�ed Modelling Language { a standard notation and modelling teh-nique for modelling software systems.XML : Extensible Markup Language { a simple and very exible text format de-signed for information exhange that enodes data with meaningful strutureand semantis.

Otober 1, 2007 Page 71/71

