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Abstract

While still a work in progress, this document focuses on the empirical analysis of real
personal income data from a number of European countries for the EURACE project. Both
descriptive and influential statistical issues are addressed. The document is going to be
completed with the analysis of size and growth of European business firms.
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1 The Shape of the Income Distribution1

A logical starting point for a discussion of the size distribution of incomes is Pareto’s (1964,
1965) observation that the proportion of incomes above a level x is well approximated by

F̄ (x) = P> (x) = Pr (X > x) =
(
k

x

)α
, k ≤ x <∞, k, α > 0, (1)

k being the minimum possible value of X. According to Pareto, the parameter α in (1), which
turns out to be some kind of index of inequality of distribution, was usually not much different
from 1.5. He asserted that there was some kind of underlying “law” that determined the form of
income distributions. On occasion he even claimed that the value of α appeared to be invariant
under changes of definition of income, changes due to taxation, etc., and to be insensitive to
the choice of measuring individual or family income, or income per unit household member.

The classical Pareto’s distribution (1) with its heavy tail soon became an accepted model
for income. That is not to say that competitors did not abound. Gibrat’s (1931) celebrated
“law of proportional effect” leading to the lognormal distribution

P> (x) = 1− Φ
(

log x− µ
σ

)
, 0 ≤ x <∞, −∞ < µ <∞, σ > 0 (2)

remains a strong competitor in any effort to fit income curves. The obvious advantage of
the lognormal distribution is that following a simple transformation the enormous armature
of inference for normal distributions is readily available. However, the functional form that is
appropriate for modeling distributions depends on the definition of income and the particular
part of the distribution in which one happens to be interested. For example, Aitchison &
Brown (1954, 1957) argues that the lognormal hypothesis is particularly appropriate for the
distribution of earnings in fairly homogeneous sections of the workforce, but when one examines
the distribution of income from all sources he is quite likely to find in many instances that
lognormality remains a reasonable assumption for the bulk of the income while the upper tail
approximates more closely to the Pareto’s distribution, as the evidence of Figure 1 bears out2.
Moreover, empirically the values of parameter α are not “stable” indicating, for that part of the
distribution where the Paretian approximation is suitable, that the distribution of income varies
markedly over time (see Table 1 and Figure 2). The fact that the close fit of the Pareto’s formula

1The discussion here focuses chiefly on income distribution, but it could be equally well extended to wealth

1
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Figure 1: Binned cumulative distribution of personal income in log-log scale for (a) Germany
(2002), (b) Italy (2000) and (c) the United Kingdom (1998). The distribution is cumulated
from the top. The fit to equation (1) is shown by the solid line, while the dashed line is the fit
to equation (2). The interpolations were performed via the Nonlinear Least-SQuares (NLSQ)
method. The corresponding estimated parameter values are provided in Table 1.

remains remarkably satisfactory only for high incomes rapidly led accumulating experience to
point out that Pareto’s law can hardly be expected to apply to the income distribution as a
whole3.

distribution, albeit with some care because of the distinctive features of wealth data. For a review of methods

used to summarize and comparing wealth distributions, see e.g. Jenkins & Jäntti (2005).
2For the purposes of Figure 1, household income data with negative and zero values were eliminated and the

remaining ones grouped into 100 equally spaced bins. The cumulative count of elements inside each bin was then
plotted (on the horizontal axis) against the position of bin centers (on the vertical axis). In all cases, household
income is the annual total post-tax-and-transfer household income, equivalized by dividing by the square root of
the number of members in the household; it is expressed in nominal local currency units and were converted into
1995 constant prices by using the Consumer Price Index (CPI) obtained from the OECD (2003).

3The “Paretian upper tail” works well for the distribution of wealth. There is a superficial reason to suppose
that a curve like Pareto’s might be useful in this application. Wealth data are usually compiled with any accuracy
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Table 1: Estimated lognormal and Pareto’s distribution parameters for the countries and
years shown in Figures 1–2. Standard errors are listed in parentheses. Also shown are the
estimates of Gibrat’s index of inequality1, measured as β = 1

σ
√

2
.

Country Year µ̂ σ̂ k̂ α̂ β̂

GER

1990 5.07 (0.02) 0.52 (0.01) 9,464.02 (718.15) 2.35 (0.07) 1.37
1991 5.19 (0.05) 0.58 (0.02) 11,632.73 (417.61) 2.67 (0.05) 1.22
1992 5.26 (0.04) 0.63 (0.03) 1,121.38 (176.19) 1.55 (0.05) 1.12
1993 5.35 (0.03) 0.69 (0.01) 6,541.44 (723.84) 2.39 (0.09) 1.03
1994 5.28 (0.02) 0.65 (0.01) 5,763.27 (595.15) 2.23 (0.08) 1.08
1995 5.35 (0.02) 0.69 (0.01) 3,609.71 (528.30) 1.93 (0.08) 1.02
1996 5.60 (0.11) 0.79 (0.05) 2,298.85 (376.29) 1.76 (0.07) 0.89
1997 5.38 (0.05) 0.70 (0.03) 18,975.12 (1,540.98) 3.79 (0.19) 1.00
1998 5.55 (0.08) 0.77 (0.03) 15,754.00 (1,215.19) 3.37 (0.14) 0.92
1999 5.53 (0.06) 0.76 (0.03) 6,872.99 (458.41) 2.29 (0.06) 0.93
2000 5.46 (0.05) 0.74 (0.02) 14,394.27 (576.28) 3.03 (0.06) 0.95
2001 5.39 (0.03) 0.70 (0.03) 16,378.20 (1,142.39) 3.41 (0.11) 1.01
2002 5.78 (0.02) 0.72 (0.01) 17,094.20 (1,448.97) 1.97 (0.05) 0.98

ITA

1987 4.79 (0.03) 0.56 (0.02) 15,620.20 (171.27) 3.10 (0.03) 1.27
1989 4.81 (0.02) 0.51 (0.02) 12,285.46 (193.75) 3.05 (0.03) 1.38
1991 4.90 (0.02) 0.57 (0.01) 12,580.46 (252.66) 3.29 (0.05) 1.25
1993 5.00 (0.03) 0.66 (0.02) 17,447.09 (152.81) 3.69 (0.02) 1.07
1995 5.21 (0.06) 0.78 (0.04) 5,295.59 (424.83) 2.18 (0.06) 0.90
1998 5.32 (0.04) 0.83 (0.03) 8,677.66 (578.48) 2.40 (0.05) 0.85
2000 5.28 (0.04) 0.82 (0.03) 8,088.60 (477.31) 2.40 (0.05) 0.87
2002 4.88 (0.01) 0.57 (0.01) 12,073.99 (125.45) 2.92 (0.02) 1.24

UK

1991 5.74 (0.11) 0.95 (0.04) 12,527.99 (654.26) 3.78 (0.14) 0.74
1992 5.19 (0.07) 0.71 (0.04) 9,498.47 (520.88) 3.09 (0.09) 1.00
1993 8.12 (0.98) 1.52 (0.20) 14,838.40 (315.70) 4.39 (0.10) 0.47
1994 5.51 (0.10) 0.86 (0.04) 14,541.53 (252.71) 4.08 (0.06) 0.82
1995 5.33 (0.07) 0.80 (0.03) 3,077.33 (395.67) 1.95 (0.08) 0.89
1996 5.67 (0.11) 0.90 (0.04) 13,499.37 (479.98) 3.92 (0.10) 0.78
1997 5.21 (0.04) 0.74 (0.02) 7,466.55 (758.72) 2.62 (0.12) 0.96
1998 5.10 (0.04) 0.68 (0.03) 4,515.06 (373.22) 2.18 (0.06) 1.04
1999 4.99 (0.03) 0.62 (0.02) 2,688.51 (258.90) 1.72 (0.05) 1.14
2000 5.06 (0.03) 0.63 (0.02) 8,507.13 (659.65) 2.97 (0.10) 1.12
2001 5.13 (0.05) 0.67 (0.03) 5,272.06 (267.53) 2.38 (0.04) 1.06

1 While the Pareto’s index provides a measure of the income inequality for the tail, the Gibrat’s index
provides a measure of the income inequality corresponding to the body of the distribution, and like
the former is an inverse index of concentration: i.e., if β has low values (large variance of the global
distribution), the personal income is unevenly distributed; clearly, the reverse is true if β has high
values. However it is worthwhile considering that that the measured values of Gibrat’s index and
Pareto’s exponent are not consistent with the most widely used measures of income inequality (e.g. the
Gini’s coefficient) if one associates lower values of these indexes with increased inequality. In fact, if
income follows either a lognormal or a Pareto’s distribution throughout, then a clear correspondence can
be found between the two measures and the preferred inequality index; however, observed distributions
are not only lognormal and show a power-law only over a very limited range; hence, the correspondence
breaks down (see e.g. Persky, 1992).
Source: author’s own calculations based on the GSOEP-CNEF income data for the years 1990–2002, the
SHIW income data for the years 1987–2002 and the BHPS-CNEF income data for the years 1991–2001.

This preliminary glimpse of evidence is perhaps sufficient to reinforce at least two conclusions

only for the moderately wealthy and above. Hence—excluding those whose wealth is unrecorded—one typically
finds a single-tailed distribution. The Paretian property of the tail of the wealth distribution is demonstrated
admirably by the Swedish data examined by Steindl (1965) where α is about 1.5 to 1.7.
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Figure 2: Time development of the personal income distribution for (a) Germany (1990–2002),
(b) Italy (1987–2002) and (c) the United Kingdom (1991–2001).

that may have suggested themselves earlier in the discussion.

• Neither the Pareto’s nor the lognormal hypothesis provides a “law” of distribution in the
strict sense that it (or a particular member of either family) is an exact model of income
distribution. In particular, it is nonsense to suppose that the Pareto’s curve (where
applicable) should remain stable over time: as it happens, α fluctuates within narrow
bounds.

• Nevertheless, one or other functional form is a reasonable approximation of the shape of
income distribution when one looks at a well-defined piece of it.

This could be the end of the story, except for two nagging questions. First, since the Pareto’s
law seems to hold only for the upper tail of the income distribution, how might one determine
the cutoff point above which it could be expected to hold? And second, what kind of model
would account for income distribution throughout its entire range? Subject-specific results are
discussed in what follows.
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2 On Bootstrapping to “Endogenize” Tail Estimation

Inference procedures for the classical Pareto’s (power-law) distribution have been discussed
extensively in the literature (see e.g. Arnold, 1983, Johnson et al., 1994, Kleiber & Kotz,
2003, and Quandt, 1996, for a considerable in-depth discussion). Perhaps the oldest and still
among the most popular technique for estimating parameters relies on the observation that the
logarithm of the survival function (1) is linear, i.e.

log F̄ (x) = α log k − α log x.

Fitting a straight line by least squares leads to the following regression estimator of α

α̂ =
n

n∑
i=1

log xi
n∑
i=1

log F̄ (xi)−
n∑
i=1

log xi log F̄ (xi)

n
n∑
i=1

(log xi)
2 −

(
n∑
i=1

log xi

)2 ,

while an estimator for k can be obtained by exploiting the mathematical relationship

k̂ = antilog

(
Ĉα̂
α̂

)
,

where Ĉα̂ = log F̄ (x) + α̂log x is the regression constant estimate.
Unfortunately, this approach is not immune from objections (Aigner & Goldberger, 1970;

Clauset et al., 2007; Coronel-Brizio & Hernández-Montoya, 2005; Goldstein et al., 2004; Sor-
nette, 2004; Weron, 2001), and some alternative methods for estimating the parameters of a
power-law distribution that are generally more accurate and robust have been proposed. Among
these, the maximum likelihood estimator of α introduced by Hill (1975)—which is known to
be asymptotically normal (Hall, 1982) and consistent (Mason, 1982)—does not assume a para-
metric form for the entire distribution function, but focuses only on the tail behavior. That is,
if x[n] ≥ x[n−1] ≥ . . . ≥ x[n−m] ≥ . . . ≥ x[1], with x[i] denoting the ith order statistic, are the
sample elements put in descending order, then the Hill’s estimator for α based on the m largest
order statistics is

α̂n (m) =

[
1
m

m∑
i=1

(log xn−i+1 − log xn−m)

]−1

, (3)

where n is the sample size and m an integer value in [1, n]. Unfortunately, it is difficult to
choose the right value of m. In practice, α̂n (m) is plotted against m and one looks for a region
where the plot levels off to identify the optimal sample fraction to be used in the estimation of α
(Embrechts et al., 1997; Resnick, 1997). Moreover, the finite-sample properties of the estimator
(3) depend crucially on the choice of m: increasing m reduces the variance because more data
are used, but it increases the bias because the power-law is assumed to hold only in the extreme
tail.

Over the last twenty years, estimation of the Pareto’s index α has received considerable
attention in extreme value statistics (see e.g. Lux, 2001). All of the proposed estimators,
including the Hill’s estimator, are based on the assumption that the number of observations in
the upper tail to be included, m, is known. In practice, m is unknown; therefore, the first task is
to identify which values are really extreme values. Tools from exploratory data analysis, as the
quantile-quantile plot and/or the mean excess plot, might prove helpful in detecting graphically
the quantile x[n−m] above which the Pareto’s relationship is valid; however, they do not propose

5



any formal computable method and, imposing an arbitrary threshold, they only give very rough
estimates of the range of extreme values.

Given the bias-variance trade-off for the Hill’s estimator, a general and formal approach in
determining the best m value is the minimization of the Mean Squared Error (MSE) between
α̂n (m) and the theoretical value α. Unfortunately, in empirical studies of data the theoretical
value of α is not known. Therefore, an attempt to find an approximation to the sampling
distribution of the Hill’s estimator is required. To this end, a number of innovative techniques
in the statistical analysis of extreme values proposes to adopt the powerful bootstrap tool to
find the optimal number of order statistics adaptively (Dacorogna et al., 1992; Danielsson et
al., 2001; Hall, 1990; Lux, 2000). By capitalizing on these recent advances in the extreme value
statistics literature, in this section a subsample semi-parametric bootstrap algorithm is proposed
in order to make a more automated, “data-driven” selection of the extreme quantiles useful for
studying the upper tail of income distribution, and to end up at less ambiguous estimates of
α4. This methodology is described in Section 2.1, and its application to Italian income data is
given in Section 2.2.

2.1 Estimation Technique for Threshold Selection

To find the optimal threshold k∗n—or equivalently the optimal number m∗ of extreme sample
values above that threshold—to be used for estimation of α, the MSE of the Hill’s estimator
(3) is minimized for a series of thresholds kn = x[n−m], and the kn value at which it attains
the minimum is picked as k∗n. Given that different threshold series choices define different
sets of possible observations to be included in the upper tail of a specific observed sample
xn = {xi; i = 1, 2, . . . , n}, only the observations exceeding a certain threshold that additionally
follow a Par (kn, α̂n (m)) distribution—where α̂n (m) is a prior estimate for each threshold kn
of the Pareto’s tail index obtained through the Hill’s statistic—are included in the series.

In order to check this condition, a (two-sided) Kolmogorov-Smirnov (K-S ) goodness-of-fit
test is performed for each threshold in the original sample for the null hypothesis

H0 : F̂n (y) = F (y)

versus the general alternative of the form

H1 : F̂n (y) 6= F (y) ,

where Y is a standard exponential variable, i.e. py (y) = e−y, y > 0, and F̂n (y) is the empirical
cumulative distribution function5. The formal steps in making a test of H0 are as follows
(Stephens, 1970, 1974; D’Agostino & Stephens, 1986):

4Hill himself devised a data-analytic method for choosing m which is based on sequentially testing appropriate
functions of the observations for exponentiality. However, as observed by Hall & Welsh (1985), the exponential
approximation deteriorates very gradually, leading Hill’s method to largely overestimate m, and thus α by
Equation (3).

5A basic distributional property of the standard Pareto’s distribution is its close relationship with the expo-
nential distribution. Indeed, using the rule of transformation of random variables

py (y) = px
[
f−1 (y)

] ∣∣∣∣d f−1 (y)

d y

∣∣∣∣ ,
where y = f (x) = α log

(
x
k

)
and x = f−1 (y) = ke

y
α , one immediately gets that Y has a standard exponential

distribution, i.e. an exponential distribution with parameter equal to 1. Therefore, hypothesis testing for the
classical Pareto’s distribution may follow immediately from the exponential case.
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1. Calculate the original K-S test statistic, D, by using the formula

D = sup
−∞<y<∞

∣∣∣F̂n (x)− F (y)
∣∣∣ .

2. Calculate the modified form, T ∗, by using the formula

T ∗ = D

(√
n+ 0.12 +

0.11√
n

)
. (4)

3. Reject H0 if T ∗ exceeds the cutoff level, z, for the chosen significance level.

To obtain an estimate of finite-sample bias and variance (and thus MSE) at each threshold
coming from the null hypothesis H0, a natural criterion is to use the bootstrap (Davison &
Hinkley, 1997; Efron & Tibshirani, 1993). In its purest form, the bootstrap involves approxi-
mating an unknown distribution function, F (x), by the empirical distribution function, F̂n (x).
However, most times the empirical distribution model from which one resamples in a purely
nonparametric bootstrap is not a good approximation of the distribution shape in the tail6.
Therefore, the tail data are initially smoothed by fitting a Pareto’s cumulative distribution
function

PDα̂n1 ,k̂n1
(x) = p = 1−

(
kn1

x

)α̂n1

(5)

to the n1 ≤ n observations xn1 = {x ∈ xn : T ∗ ≤ z}, with k̂n1 = min
i
xi and α̂n1 =

n1∑n1
i=1(log xi−log k̂n1) being the maximum likelihood estimators for the Pareto’s distribution

parameters, and then the bootstrap samples are drawn from the set of quantiles xpn1 ={
x ∈ xn1 : PDα̂n1 ,k̂n1

(x) ≥ p
}

obtained directly from inverting the estimated model (5).
The adopted methodology can be summarized as follows:

1. Evaluate the estimate α̂n (m) of the Pareto’s tail index for each threshold in the original
sample xn by using the Hill’s estimator (3).

2. For each threshold in the original sample, make the log-transformation using the parame-
ters estimated from the data and test the Pareto’s approximation by computing the value
of the K-S test statistic (4).

3. Fit the model (5) to the subset of data xn1 belonging to the null hypothesis H0.

4. Select B independent bootstrap samples x#
1 ,x

#
2 , . . . ,x

#
B , each consisting of n1 values

drawn with replacement from the set of quantiles xpn1 obtained by inverting the fitted
model (5).

5. For each bootstrap sample x#
b , b = 1, 2, . . . , B, and for each threshold k#

n1 in the bootstrap
sample, evaluate the bootstrap estimate α̂#

n1 (m1) of the Pareto’s tail index by using the
Hill’s estimator (3).

6When income micro-data come from a sample survey, there is usually a problem of non-response, especially
at the upper extremes of the income distribution. For example, recipients of large amounts of investment income,
representing a substantial proportion of the total for investment income, tend to be a small group of individuals
concentrated in the upper end of the distribution more likely not to respond when sampled for a survey. This
non-response bias can thus give rise to a significant departure from the true underlying model for the largest
observations. See The Canberra Group (2001) on this and other conceptual and methodological problems for
data on income distribution.
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6. For each threshold k#
n1 , calculate the bias

{
E
[
α̂#
n1

(m1)
]
− α̂n (m)

}
B

=
1
B

B∑
b=1

α̂#
n1,b

(m1)− α̂n (m) ,

the variance

ŝe2
B =

1
B − 1

B∑
b=1

[
α̂#
n1,b

(m1)− 1
B

B∑
c=1

α̂#
n1,c (m1)

]2

, (6)

and the mean squared error

ˆMSEB =
{
E
[
α̂#
n1

(m1)
]
− α̂n (m)

}2

B
+ ŝe2

B

of the Hill’s tail index estimates.

7. Select as the optimal threshold k∗n = x[n−m∗] that threshold where the MSE attains its
minimum.

Minimizing the MSE, thus, amounts to find the MSE minimizing number of order statistics
m∗ = arg min

m
MSE from which one infers the optimal estimate of the tail index α̂∗n (m∗).

2.2 Empirical Application: The Italian Personal Income Distribution

The data used to illustrate how the methodology proposed in Section 2.1 can be applied to
the analysis of income distribution have been selected from the “Survey on Household Income
and Wealth” (SHIW) provided by the Bank of Italy.

Figure 3(a) depicts the outcomes of the complete sequences of K-S test for a selection of tail
fractions. Blue points mark all the observations for which the modified K-S statistic (4) does
not exceed the 5% cutoff level z = 1.358 (see solid lines)7. The figure indicates the tail regions
that may be tentatively regarded as appropriate for the implementation of the semiparametric
bootstrap technique.

The Hill’s estimator (3) is reported in Figure 3(b) for tail ≤ 25% of the full sample size.
In the figure, the optimal number of extreme sample values is reported, namely m∗ = 3, 222,
providing the following value for the tail power-law exponent: α̂∗n (m∗) = 2.50 ± 0.08, where
the error (with 95% confidence) has been obtained through the jackknife method (Dacorogna
et al., 1992; Pictet et al., 1996)8. In the computation, 974 resamples have been used, and the
subsample size has been set equal to the number of observations not rejected by the K-S test
at the 5% level (see Section 2.1 and Figure 3(a))9.

7The 5% significance point z = 1.358 with which the test has been conducted comes from Table 1 in Stephens
(1970); see also Table 1A in Stephens (1974).

8The procedure known as a jackknife forms a matrix of size [(g − 1)× h]× g from the vector of data points of
length g× h. The vector is first divided into g blocks of size h. Each column of the matrix is formed by deleting
a block from the vector. Here the standard version of the jackknife (h = 1) is adopted. On average, the jackknife
error is slightly higher than the theorerical variance estimate. However, the error obtained through the jackknife
method better relfects the data set that is actually used. The theoretical error does not account for the degree
of noise produced by the resampling, while the jackknife method does.

9The number of bootstrap replications, B, has been determined according to the method recently developed
by Andrews & Buchinsky (2000). Their approach is based on the following asymptotic result

√
B
ŝeB − ŝe∞

ŝe∞

d−→ N

(
0,

2 + γ

4

)
, (7)

where ŝe∞ is the “ideal” bootstrap standard error estimator of α̂n (m) based on an infinite number of bootstrap
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Figure 3: The Italian personal income distribution in 2000. (a) Modified K-S statistic (4)
as a function of the tail size. (b) The Hill’s estimator (3). The dashed lines represent the
95% confidence limits of the tail index estimates computed by using the jackknife method. The
point marks the optimal number of extreme sample values m∗. (c) Complementary cumulative
distribution and power-law fit by using the estimated optimal value for α.

The use of this α̂∗n optimal value produces the fit shown by the solid lines in Figure 3(c),

repetitions—if they were costless in terms of computational costs associated with them, ŝeB is the bootstrap
standard error estimator given by the square root of (6) based on B bootstrap repetitions, and γ is a measure
of the excess kurtosis of the bootstrap distribution of the Hill’s estimator. Andrews and Buchinsky’s method
requires to specify two parameters. The Percentage Deviation Bound (PDB) indicates the maximum desired
percentage difference between ŝeB and ŝe∞. The second parameter, τ , defines the probability with which ŝeB
and ŝe∞ differ by more than PDB percent; that is

Pr

(
100
|ŝeB − ŝe∞|

ŝe∞
≤ PDB

)
= 1− τ.

Therefore, given the result shown in (7), one can write

Pr

(
100
|ŝeB − ŝe∞|

ŝe∞
≤ 50z1− τ2

√
2 + γ

B

)
p−→ 1− τ,
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where the complementary cumulative distribution is plotted on a double logarithmic scale.
The vertical dashed line indicates the optimal value of the threshold parameter attained by
subsample semi-parametric bootstrapping, that is k∗n = e 19,655. As one can see, the procedure
succeeds in avoiding deviations from linearity for the largest observations that might strongly
influence the estimation of α, illustrating therefore the importance of optimally choosing the
tail threshold.

3 An Overall Description of Income Distribution

As discussed in Section 1, it has long been known that the Pareto’s distribution, providing a
description of the density for income values above some lower bound k > 0, is usually unsuitable
to approximate the full distribution of income. Indeed, even though there are simple expressions
for the moments which depend only on the Pareto’s parameters α and k and the expressions
for most common inequality measures depend only on α—so that the (inverse of) α may also
be considered as an inequality measure, the apparent attractions of the Pareto’s distribution
evaporate somewhat when one considers its implications for the distribution of income amongst
the population as a whole, i.e. including units with income less than k. For example, Atkinson &
Harrison (1978) show how expressions for the Gini’s coefficient and the relative mean deviation
depend on assumptions about the size of “excluded population” (i.e. the proportion of the
population with income below k) and its average income. In particular, α no longer has such a
straightforward interpretation. For example, an increase in α may be associated with an increase
in inequality according to the Gini, but a decrease according to the Coefficient of Variation.

This suggests fitting of parametric models for the distribution of income as a whole. The
income distribution literature suggests a large number of candidates (see e.g. the comprehensive
survey by Kleiber & Kotz, 2003). According to Dagum (1977), the different approaches can be
grouped into three categories. One approach consists in viewing the functional form describing
an income distribution as the outcome of a stochastic process (e.g. the lognormal model in
Gibrat, 1931, and the Pareto’s distribution in Champernowne, 1953). Another approach derives

or

PDB
.
= 50z1− τ2

√
2 + γ

B
,

so that

B ≈ 2, 500z2
1− τ2

2 + γ

PDB2
, (8)

where z2
1− τ2

is the 1 − τ
2

quantile of the standard normal distribution. Because γ is unknown, Andrews and

Buchinsky propose a three-step method for choosing B:

1. Set γ = 0 and evaluate (8) to obtain an initial estimate B1 of B. Setting γ = 0 corresponds to assuming
that the bootstrap distribution of the Hill’s estimator has no excess kurtosis.

2. Perform B1 bootstrap replications, and then compute the bootstrap bias-corrected estimator of γ

γ̂B =

1
B−1

B∑
b=1

[
α̂#
n1,b (m1)− 1

B

B∑
c=1

α̂#
n1,c (m1)

]4
{

1
B−1

B∑
b=1

[
α̂#
n1,b (m1)− 1

B

B∑
c=1

α̂#
n1,c (m1)

]2}2 − 3.

3. Obtain a second estimate B2 of B by using γ = γ̂B in (8). If B1 ≥ B2, take B∗ = max (B1, B2) = B1 as
the desired number of bootstrap repetitions; otherwise, draw a further B∗ −B1 bootstrap samples.

In the bootstrapping application, the following pair (PDB, τ) of parameters is used: PDB = 5 and τ = 0.05.
Then, z1− τ2 = 1.96, and from step 1 of the Andrews and Buchinsky’s method the estimated initial number of
replications needed is 768. With this set of bootstrap replications in hand, the revised number based on steps 2
and 3 is 974, with a further 206 bootstrap samples needed.
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flexible analytical forms by considering solely their ability to ensure a satisfactory fit to empirical
data (e.g. the gamma density of Salem & Mount, 1974, and the generalized beta models
of McDonald, 1984). Finally, models are also derived from differential equations specified to
capture regularity features of observed income distributions (e.g. the models proposed by Singh
& Maddala, 1976, and Dagum, 1977).

The families of two-parameter models are evidently limited in the variety of shapes of income
distributions that they can be expected to describe10. One way forward is to consider extensions
to the basic forms to make them more flexible11. Several other families of distributions have been
shown to have merit in capturing some important features of the distribution—e.g. the cyclical
movements in the observed income distribution, and thus the impact of macroeconomic factors
on the distribution of income (Metcalf, 1969); many of these functional forms are interrelated,
in the sense that one is a special form of another, or one approximates another asymptotically.
In the light of these considerations, the present section proposes a three-parameter distribution
that is a generalization of the Pareto’s and the Weibull distribution using a new approach
recently advanced by Kaniadakis (2001, 2002, 2005) to describe physical systems, and already
exploited for statistical modeling in econometrics (Rajaonarison et al., 2005)12. This approach
characterizes the distribution as solution of a maximum entropy model based on the κ-deformed
exponential and logarithmic functions

expκ (x) =
(√

1 + κ2x2 + κx
)1/κ

, x ∈ R, (9a)

logκ (x) =
xκ − x−κ

2κ
, x ∈ R+. (9b)

These κ-deformed functions satisfy most properties of the standard exponential and logarithm,
which are recovered as the real deformation parameter κ approaches zero; for applications
to statistical analysis of income distribution, the most interesting property is their power-law
asymptotic behavior

expκ (x) ∼
x→±∞

|2κx|±
1
|κ| , logκ (x) ∼

x→0+
− 1

2 |κ|x
−|κ|, logκ (x) ∼

x→+∞

1
2 |κ|x

|κ|,

and thus their ability to satisfy the weak Pareto’s law (Mandelbrot, 1960)13.
10As already noted in Section 1, if one considers the entire range of income the performance of the lognormal

model in the upper end is far from being satisfactory, whereas the fit provided by the Pareto’s distribution appears
distinctly superior. In terms of goodness-of-fit, the gamma distribution outperforms the lognormal at the two
tails of the distribution (McDonald & Ransom, 1979), even though in the middle income range it overcorrects
for the positive skewness of the data (Majumder & Chakravarty, 1990).

11For example, Montroll & Shlesinger (1982, 1983) shows that a mixture of lognormal distributions with a
geometric weighting distribution would have essentially a lognormal main part but a Pareto-type distribution
in the upper tail. A generalization of the model above introduced by Reed & Jorgensen (2004) assumes that a
good fit of the whole range of incomes is provided by a distribution exhibiting Paretian (power-law) behavior in
both tails and therefore referred to as the “double Pareto-lognormal” distribution. This distribution arises as
that of the state of a geometric Brownian motion with lognormally distributed initial state after an exponentially
distributed length of time.

12The Weibull distribution was used only sporadically as an income distribution. Some quite recent applications
can be found in Atoda et al. (1988), Bartels (1977), Bordley et al. (1996), Brachmann et al. (1996), Espinguet &
Terraza (1983), McDonald (1984) and Tachibanaki et al. (1997).

13The use of the entropy concept in the analysis of income distribution is not new. For example, Ord et al.
(1981) pointed out that the Pareto’s, gamma and lognormal distributions might be selected if one uses a criterion
of maximum entropy (different measures of entropy of course lead to different maximizing distributions). On
the inequality side, Dalton’s (1920) “Principle of Population” paved the way of introducing a general measure
of inequality that led to the notion of entropy-like function much earlier to the works of Shannon (1948) in
information theory. This suggestion then found expression in the entropy-based measure of inequality proposed
by Theil (1967), which naturally contributed to the development of a general information-theoretic approach to
the measurement of inequality (Cowell, 1980a,b, and Cowell & Kuga, 1981a,b).
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Figure 4: (a) Plot of the κ-generalized CCDF given by Equation (10) versus x for some
different values of β (= 0.20, 0.40, 0.60, 0.80), and fixed α (= 2.50) and κ (= 0.75). (b) Plot
of the κ-generalized PDF given by Equation (11) versus x for some different values of
β (= 0.20, 0.40, 0.60, 0.80), and fixed α (= 2.50) and κ (= 0.75). Notice that the distribution
spreads out (concentrates) as the value of β decreases (increases).

3.1 The κ-Generalized Distribution: Definitions and Interrelations

The κ-generalized Complementary Cumulative Distribution Function (CCDF) is given by

P> (x) = expκ (−βxα) , x ∈ R+, (10)

being P> (x) the probability of finding the distribution variable X with a value greater than
x. The income variable x is defined as x = z

〈z〉 , being z the absolute personal income and 〈z〉
its mean value. Then the dimensionless variable x represents the personal income in units of
〈z〉. The constant β > 0 is a characteristic scale, since its value determines the scale of the
probability distribution: if β is large, then the distribution will be more concentrated; if β is
small, then it will be more spread out (see Figure 4(a)–(b)). The exponent α > 0 quantifies the
curvature (shape) of the distribution, which is less (more) pronounced for lower (higher) values
of the parameter, as seen in Figure 5(a)–(b). Finally, as one can observe in Figure 6(a)–(b), the
deformation parameter κ ∈ [0, 1) measures the fatness of the upper tail: the larger (smaller) its
magnitude, the fatter (thinner) the tail.

The function P> (x) defined through Equation (10) can be viewed as a generalization of
the ordinary stretched exponential (Laherrère & Sornette, 1998; Sornette, 2004), i.e. P 0

> (x) =
exp (−βxα), which recovers in the κ→ 0 limit. It is remarkable that P> (x) for x→ 0+ behaves
as the ordinary stretched exponential

P> (x) ∼
x→0+

exp (−βxα) ,

while for x→∞ presents a power-law tail

P> (x) ∼
x→+∞

(2βκ)−
1
κ x−

α
κ .

The Probability Density Function (PDF), p (x) = −dP>(x)
dx , is given by

p (x) =
αβxα−1 expκ (−βxα)√

1 + β2κ2x2α
, (11)
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Figure 5: (a) Plot of the κ-generalized CCDF given by Equation (10) versus x for some
different values of α (= 1.00, 2.00, 2.50, 3.00), and fixed β (= 0.20) and κ (= 0.75). (b) Plot
of the κ-generalized PDF given by Equation (11) versus x for some different values of
α (= 1.00, 2.00, 2.50, 3.00), and fixed β (= 0.20) and κ (= 0.75). Notice that the curvature (shape)
of the distribution becomes less (more) pronounced when the value of α decreases (increases).
The case α = 1.00 corresponds to the ordinary exponential function.

and can be viewed as a generalization of the Weibull distribution (e.g. Johnson et al., 1994),
i.e. p0 (x) = αβxα−1 exp (−βxα), which recovers in the κ → 0 limit. The function p (x) given
by Equation (11) for x→ 0+ behaves as a Weibull distribution

p (x) ∼
x→0+

αβxα−1 exp (−βxα) ,

while for x→ +∞ reduces to the Pareto’s law

p (x) ∼
x→+∞

α

κ
(2βκ)−

1
κ x−(ακ+1).

Using the complementary relation P≤ (x) = 1−P> (x), the quantile function is immediately
obtained as

x = P−1
≤ (u) = β−

1
α

[
logκ

(
1

1− u

)] 1
α

, 0 < u < 1,

from which follows that the median of the distribution is

xmed = β−
1
α [logκ (2)]

1
α .

The mode is at

xmode =β−
1
α

{[
α+ 2κ2 (α− 1)
2κ2 (α2 − κ2)

](√
1 +

4κ2 (α2 − κ2) (α− 1)2

[α2 + 2κ2 (α− 1)]2
− 1

)} 1
2α

if α > 1; otherwise, the distribution is zero-modal with a pole at the origin.
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Figure 6: (a) Plot of the κ-generalized CCDF given by Equation (10) versus x for some
different values of κ (= 0.00, 0.30, 0.50, 0.80), and fixed β (= 0.20) and α (= 2.50). (b) Plot
of the κ-generalized PDF given by Equation (11) versus x for some different values of
κ (= 0.00, 0.30, 0.50, 0.80), and fixed β (= 0.20) and α (= 2.50). Notice that the upper tail of
the distribution fattens (thins) as the value of κ increases (decreases). The case κ = 0.00 corre-
sponds to the ordinary stretched exponential (Weibull) function (Johnson et al., 1994; Laherrère
& Sornette, 1998; Sornette, 2004).

3.2 Moments and Related Parameters

The rth-order moment about the origin of the κ-generalized distribution equals

µ
′
r =

∞∫
0

xrp (x) dx =
(2βκ)−

r
α

1 + r
ακ

Γ
(

1
2κ − r

2α

)
Γ
(

1
2κ + r

2α

)Γ
(

1 +
r

α

)
, (12)

where Γ (x) is the Euler’s Gamma function Γ (x) =
∫∞

0 tx−1e−tdt. Specifically, µ
′
1 = m is the

mean of the distribution.
A formula for the variance is obtained by converting Equation (12) to the moment about

the mean using the general equation µr =
∑r

j=0

(
r
j

)
(−1)r−j µ

′
jm

r−j ; hence, for r = 2 one gets

σ2 = (2βκ)−
2
α

Γ
(
1 + 2

α

)
1 + 2 κα

Γ
(

1
2κ − 1

α

)
Γ
(

1
2κ + 1

α

) − [Γ
(
1 + 1

α

)
1 + κ

α

Γ
(

1
2κ − 1

2α

)
Γ
(

1
2κ + 1

2α

)]2
 .

In this way it is also possible to define the standardized moments of the distribution, which
are in turn used to define skewness and excess kurtosis, respectively given by

γ1 =
µ3

σ3
=
µ
′
3 − 3mσ2 −m3

σ3

and

γ2 =
µ4

σ4
− 3 =

µ
′
4 − 3σ4 − 4γ1σ

3m− 6σ2m2 −m4

σ4
.

14



3.3 Lorenz Curve and Inequality Measures

The practical advantage of having the quantile function available in closed form consists
in the derivation of Lorenz-ordering results. In statistical terms, for any general distribution
supported on the nonnegative half-line with a finite and positive first moment the Lorenz (1905)

curve can be written in the form L (u) =
∫ u
0 P−1
≤ (t) d t∫ 1

0 P
−1
≤ (u) du

, u ∈ [0, 1], where m =
∫ 1

0 P
−1
≤ (u) du is the

quantile formula for the mean and P−1
≤ (u) is the quantile function (Gastwirth, 1971). Hence,

the Lorenz curve for the κ-generalized distribution is defined by

Lκ (u) =1− 1 + κ
α

2Γ
(

1
α

) Γ
(

1
2κ + 1

2α

)
Γ
(

1
2κ − 1

2α

) {2α (2κ)
1
α (1− u)

[
logκ

(
1

1− u

)] 1
α

+

+BX

(
1

2κ
− 1

2α
,

1
α

)
+BX

(
1

2κ
− 1

2α
+ 1,

1
α

)}
,

(13)

where Bx (s, r) is the incomplete Beta function given by Bx (s, r) =
∫ x

0 t
s−1 (1− t)r−1 dt with

X = (1− u)2κ.
Also, according to the results of Section 3.2 several measures of inequality can be considered.

First, the Gini’s (1914) measure of income inequality can be derived using the representation
in terms of order statistics G = 1 − 1

m

∫∞
0 [1− P≤ (x)]2 dx due to Arnold & Laguna (1977); it

follows that the Gini’s coefficient for the κ-generalized distribution is

Gκ = 1− 2α+ 2κ
2α+ κ

Γ
(

1
κ − 1

2α

)
Γ
(

1
κ + 1

2α

) Γ
(

1
2κ + 1

2α

)
Γ
(

1
2κ − 1

2α

) .
Second, relating the standard deviation to the mean yields the following expression for the

Coefficient of Variation

CVκ =
σ

m
=

√√√√√√√
Γ(1+ 2

α)
1+2 κ

α

Γ( 1
2κ
− 1
α)

Γ( 1
2κ

+ 1
α)[

Γ(1+ 1
α)

1+ κ
α

Γ( 1
2κ
− 1

2α)
Γ( 1

2κ
+ 1

2α)

]2 − 1.

Furthermore, the Generalized Entropy class of inequality measures (Cowell, 1980a,b; Cowell
& Kuga, 1981a,b) is defined as

GEκ (θ) =
1

θ2 − θ

{
m−θ

[
(2βκ)−

θ
α

1 + θ
ακ

Γ
(

1
2κ − θ

2α

)
Γ
(

1
2κ + θ

2α

)Γ
(

1 +
θ

α

)]
− 1

}
, θ 6= 0, 1. (14)

The Mean Logarithmic Deviation is

MLDκ = lim
θ→0

GEκ (θ) =
1
α

[
γ + ψ

(
1

2κ

)
+ log (2βκ) + α log (m) + κ

]
,

where γ = −ψ (1) = 0.5772156649015328606 . . . is the Euler-Mascheroni’s constant and ψ (x) =
d log [Γ (x)] /dx = Γ

′
(x) /Γ (x) is the Digamma function; the Theil’s (1967) index is

Tκ = lim
θ→1

GEκ (θ) =
(2βκ)−

1
α

m (α+ κ)2

Γ
(

1
2κ − 1

2α

)
Γ
(

1
2κ + 1

2α

)Γ
(

1 +
1
α

){
(α+ κ)

[
ψ

(
1 +

1
α

)
−

−1
2
ψ

(
1

2κ
− 1

2α

)
− 1

2
ψ

(
1

2κ
+

1
2α

)
− α log (m)− log (2βκ)

]
− ακ

}
.
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Expressions for each index other than for the cases θ = 0, 1 can be derived by straightforward
substitution. In particular, the bottom-sensitive index is given by

GEκ (−1) = −1
2

+
Γ
(
1 + 1

α

)
Γ
(
1− 1

α

)
2
[
1 +

(
κ
α

)2] ,

while the expression for the top-sensitive index (or half the squared Coefficient of Variation) is

GEκ (2) =
1
2


Γ(1+ 2

α)
1+2 κ

α

Γ( 1
2κ
− 1
α)

Γ( 1
2κ

+ 1
α)[

Γ(1+ 1
α)

1+ κ
α

Γ( 1
2κ
− 1

2α)
Γ( 1

2κ
+ 1

2α)

]2 − 1

 =
1
2
CV 2

κ .

Finally, the Atkinson’s (1970) index for inequality aversion parameter θ = 1−ε can be easily
computed from GEκ (θ) by exploiting the relationship A (ε) = 1 − [ε (ε− 1)GE (1− ε) + 1]

1
1−ε

(see e.g. Cowell, 1995); this yields

Aκ (ε) = 1−
{
m−(1−ε)

[
(2βκ)−

1−ε
α

1 + 1−ε
α κ

Γ
(

1
2κ − 1−ε

2α

)
Γ
(

1
2κ + 1−ε

2α

)Γ
(

1 +
1− ε
α

)]} 1
1−ε

, ε 6= 1. (15)

The limiting form of Equation (15) as ε→ 1 is

Aκ (1) = 1− e− 1
α [γ+ψ( 1

2κ)+log(2βκ)+α log(m)+κ] = 1− e−MLDκ .

3.4 Estimation

Parameter estimation for the κ-generalized distribution can be performed using the Maxi-
mum Likelihood (ML) approach. Assuming that all observations x = {x1, . . . , xn} are indepen-
dent, the likelihood function is

L (θ; x) =
n∏
i=1

p (xi) = (αβ)n
n∏
i=1

xα−1
i expκ (−βxαi )√

1 + β2κ2x2α
i

,

where θ = {α, β, κ} is the parameter vector. This leads to the problem of solving the partial
derivatives of the log-likelihood function l (θ; x) = logL (θ; x) with respect to κ, α and β.
However, obtaining explicit expressions for the ML estimators of the three parameters is difficult,
making direct analytical solutions intractable, and one needs to use numerical optimization
methods.

Taking into account the meaning of the variable x, the mean value results to be equal to
unity, i.e. m =

∫∞
0 xp (x) dx = 1. The latter relationship permits to express the parameter β

as a function of the parameters κ and α, obtaining

β =
1

2κ

[
Γ
(

1
α

)
κ+ α

Γ
(

1
2κ − 1

2α

)
Γ
(

1
2κ + 1

2α

)]α . (16)

In this way, the problem to determine the values of the free parameters {κ, α, β} of the theory
from the empirical data reduces to a two parameter {κ, α} fitting problem. Therefore, to find
the parameter values that give the most desirable fit, one can use the Constrained Maximum
Likelihood (CML) estimation method (Schoenberg, 1997), which solves the general maximum
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log-likelihood problem of the form l (θ; x) =
∑n

i=1 log p (xi;θ)wi , where n is the number of
observations, wi the weight assigned to each observation, p (xi;θ) the probability of xi given
θ, subject to the non-linear equality constraint given by Equation (16) and bounds α, β > 0
and κ ∈ [0, 1). The CML procedure finds values for the parameters in θ such that l (θ; x) is
maximized using the sequential quadratic programming method (Han, 1977) as implemented,
e.g., in Matlab R© 7.

3.5 Empirical Implementation

The κ-generalized distribution was fit to data on personal income distribution for the fol-
lowing countries and years: Germany in 2001, Italy in 2002 and the United Kingdom in 2001.
The unit of assessment is the household, and income is expressed in nominal local currency
units—and is equivalized for differences in household size by adjusting by the square root of the
number of household members (e.g. Deaton, 1996). The total number of sample households
surveyed in each country is reported in the first row of Table 2. Following the recommendations
of The Canberra Group (2001), all calculations use the sampling weights produced by the data
provider. The distributions considered are those of disposable income, i.e. the income recorded
after the payment of taxes and government transfers. Furthermore, observations with zero and
negative values have been excluded from the analysis, and income has been normalized to its
empirical average (fifth row of Table 1).

The maximum likelihood estimates of the parameters are reported in Table 1. The fit was
very good, and the comparison between the predicted probabilities from the present distribution
and the observed ones shown in panels (a) and (b) of Figures 7–9 suggests that the κ-generalized
functional form offers a great potential for describing the data over their whole range, from the
low to medium income region through to the high income Pareto’s power-law regime, including
the intermediate region for which a clear deviation exists when two different curves are used.

Panel (c) of the same figures depicts the data points for the empirical Lorenz curve, i.e.

L
(
i
n

)
=

∑i
j=1 xj∑n
j=1 xj

, i = 1, 2, . . . , n, superimposed by the theoretical curve Lκ (u) given by Equation

(13) with estimates replacing α and κ as necessary. This formula is shown by the solid line in the
plots, and fits the data very well. Furthermore, Table 1 presents the calculated inequality based
on the measures discussed in Section 3.3. As it is evident, there is a very good agreement between
the estimates of the indexes and the values implied by the κ-generalized distribution14; the
95% confidence intervals constructed around the empirical results always cover the theoretical
predictions15.

In order to further evaluate the accuracy of the proposed distributional model, the hypoth-
esis that each set of n observed data follows a κ-generalized distribution has also been tested
by calculating the K-S statistic D+ = max1≤i≤n

[
in−1 − P≤ (xi)

]
, i = 1, 2, . . . , n. Since in this

case there is no asymptotic formula for calculating the p-value, the problem has been reduced
to testing that the x values have a standard exponential distribution (i.e., an exponential distri-
bution with parameter equal to 1) by relating the function P> (x) given by Equation (10) to the
ordinary exponential function, namely expκ (−βxα) = exp (−xκ), through the transformation
xκ = 1

κ log
(√

1 + β2κ2x2α + βκxα
)

, where the parameters are estimated from the data. Thus

14For the formulas used to estimate the inequality measures of Section 3.3 see e.g. Cowell (1995).
15The upper and lower confidence limits have been obtained via the “bootstrap-t” method, which both theory

and Monte Carlo evidence have shown to provide better coverage in many aplications (e.g. Hall, 1988, 1992,
and Horowitz, 2001). To have an available estimate of the standard error of the parameter of interest for each
bootstrap replication, a bootstrap-within-bootstrap procedure based on a total number of replications equal to
B1 ×B2 = 100× 25 = 2500—where B2 is the number of resamples drawn to obtain an estimate of the standard
error used to compute the sequence {ti}i=B1

i=1 —has been used.
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Table 2: Estimated parameters of the κ-generalized distribution for the countries and
years shown in Figures 7–9. Also shown are the total number of sample households
surveyed, the estimated weighted average income and corresponding 95% confidence
interval, the empirical estimates and theoretical predictions of the inequality measures
discussed in Section 3.3, and the value of the K-S goodness-of-fit test statistic.

Germany Italy United Kingdom
n 11,344 8,011 10,636

α
a 2.5659 2.2540 2.7357

(2.5653, 2.5666) (2.2533, 2.2547) (2.7348, 2.7366)

β
a 0.8788 1.0087 0.9433

(0.8786, 0.8791) (1.0083, 1.0091) (0.9429, 0.9437)

κ
a 0.5697 0.6944 0.7080

(0.5692, 0.5702) (0.6937, 0.6950) (0.7074, 0.7086)

〈z〉 36315.67 18087.92 14982.20
(35976.42, 36654.91) (17841.07, 18334.77) (14799.11,15165.28)

G
b 0.2749 0.3311 0.2790

(0.2679, 0.2803) (0.3261, 0.3358) (0.2735, 0.2891)
Gκ 0.2748 0.3306 0.2772

CV
b 0.5505 0.7344 0.6073

(0.4918, 0.6094) (0.6937, 0.7842) (0.5171, 0.8136)
CVκ 0.5368 0.7366 0.5712

MLD
b 0.1430 0.2015 0.1525

(0.1338, 0.1529) (0.1948, 0.2089) (0.1345, 0.1612)
MLDκ 0.1362 0.1971 0.1360

T
b 0.1306 0.1960 0.1402

(0.1176, 0.1411) (0.1873, 0.2053) (0.1259, 0.1616)
Tκ 0.1276 0.1948 0.1334

GE (2)
b 0.1515 0.2697 0.1844

(0.1171, 0.1858) (0.2378, 0.3086) (0.1297, 0.3110)
GEκ (2) 0.1441 0.2713 0.1631

A (1)
b 0.1332 0.1825 0.1415

(0.1254, 0.1416) (0.1771, 0.1885) (0.1256, 0.1491)
Aκ (1) 0.1274 0.1789 0.1272

D+c 0.0084 0.0069 0.0091
(0.1999) (0.1331) (0.2306)

a In parentheses: normal-approximation 95% confidence interval based on the reciprocal of the ob-
served Fisher’s information matrix.

b In parentheses: bootstrap-t 95% confidence interval based on 2500 replications.
c In parentheses: p-value.

Source: author’s own calculations based on the GSOEP-CNEF income data for the year 2001, the
SHIW income data for the year 2002 and the BHPS-CNEF income data for the year 2001.

the significance level in the upper tail is given approximatively by P> (T ∗) = exp
[
−2 (T ∗)2

]
,

with T ∗ = D+ (
√
n+ 0.12 + 0.11/

√
n), as suggested for example by Stephens (1970). The re-

sults are shown in the last row of Table 1. As one can appreciate, the maximum distance
between the empirical data and the theoretical model as assessed by the K-S statistic is very
small, and the p-values in parentheses do not lead to rejection of the null hypothesis that the
data may come from a κ-generalized distribution at any of the usual significance levels (1%, 5%
and 10%). The linear behaviour emerging from the Quantile-Quantile (Q-Q) plots of the sample
quantiles versus the corresponding quantiles of the fitted κ-generalized distribution displayed in
panel (d) of Figs. 7–9 strongly supports the quantitative results obtained by hypothesis testing.
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Figure 7: The German personal income distribution in 2001. The income variable is measured
in current year euros. (a) Plot of the empirical CCDF in the log-log scale. The solid line is the
theoretical model given by Equation (10) fitting very well the data in the whole range from the low
to the high incomes including the intermediate income region. This function is compared with
the ordinary stretched exponential one (dotted line)—fitting the low income data—and with the
pure power-law (dashed line)—fitting the high income data. (b) Histogram plot of the empirical
PDF with superimposed fits of the κ-generalized (solid line) and Weibull (dotted line) PDFs.
(c) Plot of the Lorenz curve. The hollow circles represent the empirical data points and the
solid line is the theoretical curve given by Equation (13). The dashed line corresponds to the
Lorenz curve of a society in which everybody receives the same income and thus serves as a
benchmark case against which actual income distribution may be measured. (d) Q-Q plot of
the sample quantiles versus the corresponding quantiles of the fitted κ-generalized distribution.
The reference line has been obtained by locating points on the plot corresponding to around the
25th and 75th percentiles and connecting these two. In plots (a), (b) and (d) the income axis
limits have been adjusted according to the range of data to shed light on the intermediate region
between the bulk and the tail of the distribution.
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Figure 8: Same plots as in Figure 7 for the Italian personal income distribution in 2002. The
income variable is measured in current year euros.
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(pp. 1–15). Geneva: Librairie Droz. (English translation in Rivista di Politica Economica,
87, 647–700, 1997)

Persky, J. (1992). Retrospectives: Pareto’s law. The Journal of Economic Perspectives, 6 ,
181–192.

Pictet, O. V., Dacorogna, M. M., & Müller, U. A. (1996). Hill, Bootstrap and Jackknife
Estimators for Heavy Tails (Working Paper No. 1996–12–10). Zürich: Olsen & Associates.
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