
Project no.
035086

Project acronym
EURACE
Project title

An Agent-Based software platform for European economic policy design with
heterogeneous interacting agents: new insights from a bottom up approach to

economic modelling and simulation

Instrument: STREP

Thematic Priority: IST FET PROACTIVE INITIATIVE “SIMULATING EMERGENT PROP-
ERTIES IN COMPLEX SYSTEMS”

Deliverable reference number and title
D6.3: Software module of agent-based models of financial markets

Due date of deliverable:
31/08/2008

Actual submission date:
15/09/2008

Start date of project: September 1st 2006 Duration: 36 months
Organisation name of lead contractor for this deliverable

University of Cagliari-UNICA

Revision 1

Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)
Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

Contents

1 Introduction 5

2 Artificial Financial Market Implementation 5
2.1 Agents Specification . 6
2.2 Household Agent . 6

2.2.1 Memory . 7
2.2.2 Functions . 8
2.2.3 Messages . 9
2.2.4 States . 9

2.3 ClearingHouse Agent . 10
2.3.1 Memory . 10
2.3.2 Functions . 11
2.3.3 Messages . 11
2.3.4 States . 11

2.4 Firm Agent . 12
2.4.1 Memory . 12
2.4.2 Functions . 13
2.4.3 Messages . 13
2.4.4 States . 13

2.5 Bank Agent . 13
2.5.1 Memory . 13
2.5.2 Functions . 13
2.5.3 Messages . 14
2.5.4 States . 14

2.6 Government Agent . 14
2.6.1 Memory . 14
2.6.2 Functions . 14
2.6.3 Messages . 15
2.6.4 State . 15

3 ADT 16
3.1 Asset . 16

3.1.1 Variables . 16
3.2 Stock . 16

3.2.1 Variables . 16
3.3 Bond . 16

3.3.1 Variables . 17
3.4 Order . 17

3.4.1 Variables . 17
3.5 Belief . 17

3.5.1 Variables . 18
3.6 ClearingMechanism . 18

3.6.1 Variables . 18

4 State dependency diagram 19

2

5 Verification and Validation of the AFM model 21
5.1 ”Stylized Facts” . 21
5.2 CUnit testing process: Verification . 22
5.3 Experimental results: Validation . 23

6 Conclusions 29

3

Abstract

This report, which is a deliverable of workpackage WP6, describes the software module
implementing an agent-base financial market model, and presents its status at the end
of the WP6. The fundamental objective of the WP6 is to design and to develop an
artificial financial market using the FLAME framework. This document aims at giving
the reader a detailed description of the implementation of the artificial financial market,
in the context of the EURACE project and including households, clearing house, firms,
bank, government, securities, transactions and relative interactions.
Also included are sections on general model implementation, the guidelines which we
followed in order to execute the CUnit testing process, the verification and the validation
of the artificial financial market model.

4

1 Introduction

The main goal of the EURACE project is to model and simulate an agent based dynamic
macro-economic system where different markets models will be integrated. Each model is a
complex system which can be analyzed and simulated as an evolving system of autonomous
interacting agents.

Concerning the AFM (Artificial Financial Market), a first analysis of the model has led to
the realization of a modular software structure based on the ”information hiding” paradigm,
both concerning active agents and ”utility objects”.

Each agent who has an active behavior has been identified as an X-agent, that is a model
of agent based on stream X-machine, a general computational paradigm. On the contraty,
”utility objects”, which offer services, have been identified as ADTs (Abstract Data Types).

We used an OOA (Object Oriented Analysis) approach, which can be extended to de-
velopment environments that do not directly support OOP (Object Oriented Programming),
because it is essentially based on a separation of modules [1], [7].

We followed the following steps to analyze the AFM module:

• identify the agents and ADTs from the requirements;

• identify the responsibilities of each object;

• identify the collaborations between objects;

• identify the inheritance relationships;

• decompose the system into autonomous subsystem;

• specify the interface of each object;

For each X-agent, we have identified the memory variables, a set of transition functions,
a set of states and the messages to get the input data, and update its memory and its state.

We recall that the data structure of an X-agent can be composed of ADTs, whereas an
object can be composed of other objects.
An abstract data type is a data structure provided of a set of operations enabled to work on
it. The ADT concept allow to abstract from the implementation details of a data object [6].

In our perspective, ADTs are important because they allow to overcome the inherent
limitations of C language, encapsulating complex behavior inside them. Clearly, using ADT
amounts to impose a strict discipline on programmers, who are allowed to operate on ADTs
only through proper functions, because the C language does not have specific constructs
constraining their use, such as the class construct in C++ and Java.

2 Artificial Financial Market Implementation

In this document we provide details of the implementation with FLAME framework, of the
Artificial Financial Market model which has been proposed by the Genoa unit.

The AFM model is described in detail in deliverable D6.1 [10], FLAME specifications are
described in the deliverable D1.1 [12].

The financial market module should be integrated with various models of the goods,
labour, credit and financial management markets, in order to obtain a completely integrated

5

model as expected in the context of the EURACE project. This is the subject of present
integration work.

2.1 Agents Specification

A first bottom-up analysis allowed us to indentify some key agents having active behavior in
the financial market model: Household, ClearingHouse, Firm, Bank, Government.

For each agent, we also described the memory variables, the messages, the transition
functions and the transition states. Furthermore, we identified some objects which have to
be implemented as abstract data types.

The agents and the ADTs involved in the implementation are listed and specified in the
following sections.

2.2 Household Agent

The financial market we have implemented is a system where the households sell and buy
financial securities. Two kinds of financial securities have been considered: Stock and Bond.

The households trade financial securities in order to obtain profit; their role is to trade
assets in exchange for cash, and vice-versa. They issue buy/sell limit orders on the asset
(Stock or Bond).

The household owns a portfolio holding all his/her assets. The budget is characterized by
an amount of shares and by an amount of cash. The shares amount, owned by each trader, is
managed by the assets owned variable; the cash amount is managed by the payment account
variable. These are memory variables of the Household agent.

On the basis of information on the market behavior, like financial status of firms and
their time series stock prices, the households form their own beliefs; namely, they estimate
the future asset price at the time step corresponding to their specific forward window.
They can follow different behaviors, and namely they can behave as: random, fundamentalist,
chartist. Traders belong to four different groups, described in the followings:

Random traders (R): R traders have zero intelligence and simply issue random orders.
They are characterized by the simplest trading strategy and represent the “bulk” of
traders who do not try to beat the market, but trade for exogenous reasons linked to
their needs. If a random trader decides to issue an order, this may be a buy or sell limit
order with equal probability.

Fundamentalist traders (F): F traders believe that each asset has got a fundamental price
Pf related to factors external to the market and, sooner or later, the price will revert
to that fundamental value.

Chartist traders (C): C traders are trend-followers. They are divided into traders who
follow the market trend and traders who follow the opposite of the market trend. First
play the market following past price trends and strictly rely on price information. They
buy (sell) when the price goes up (down). Second speculate, if the stock price is rising,
it will stop rising soon and fall, so it is better to sell near the maximum, and vice versa.

The households may decide, according to their behavior, to trade a type of stock instead
of another type of stock in order to maximize their profit, or to trade bonds instead of stocks.

6

At first, the households build their beliefs, that determine ”preferences” for each asset.
In other words, the household’s psicological attitude is modelled by means of the prospect
theory [10] (e.g. myopic loss aversion) which determines the ”preferences” structure:

• Each agent builds for each asset an histogram of past returns in order to evaluate them.

• Then he/she weights the histogram with a prospect value function, that incorporates
”myopic loss aversion”.

• Prospect utility is mapped into weights for issuing orders.

• The histogram is shifted to take dividend yields into account.

• The histogram is iterated, according to the household’s holding period.

• The weighted sum of past returns gives the prospect utility.

Through the ”preferences” structure, the household computes her/his own desired port-
folio and then sends buy/sell orders, for each asset, in order to match the desired portfolio.

Each order is characterized by a limit price and a quantity. The limit price is computed
using the last market price and the household’s belief; the quantity depends on household’s
”preferences”.

The issued orders are added to a pending orders collection. The pending orders are sent to
the clearing house, the meeting point for demand and supply, using the order message. After
that, the household receives a response message, called order status, containing information
about the order execution.

Finally, the household updates her/his portfolio and orders, which remain pending until
fulfillment or until formation of new beliefs.

2.2.1 Memory

id is a integer variable which holds the ”identity” of the Household agent.

payment account is a double variable which holds the current amount of cash owned by
the Household agent.

wealth is a double variable which returns the total wealth owned by the household; it is the
sum of the payment account and the value of each asset owned by the Household.

beliefs is a collection1 of Belief ADT which represent the beliefs for each assets.

pendingOrders is a collection of Order ADT, which represents the pending orders. Pending
orders are orders issued by a trader, but not yet executed, or partially executed.

assetsOwned is an Asset array variable used for managing the assets owned by the House-
hold agent.

assetWeights is a double array variable which holds the weights for each asset owned by
the Household.

1A collection is a dynamic Array

7

assetUtilities is a double array variable which holds the utility factors for each asset.

agent’s parameters:

forwardWindow is an integer variable which represents a forward-looking time-
horizon of each household, that indicates the households forward time perspective;

backwardWindow is an integer variable that represents a backward-looking time
window through which the household looks at the past;

bins is an integer variable that returns the number of classes composing the house-
hold’s hystogram, where past returns of an asset are ordered and grouped;

randomWeigth is a double variable which indicates the weight that identifies the
random component;

fundamentalWeigth is a double variable which indicates the weight that identifies
the fundamentalist component;

chartistWeigth is a double variable which indicates the weight that identifies the
chartist component;

holdingPeriodToForwardW is an integer variable that indicates how long an asset
is kept by the household;

lossAversion is a double variable which sets a particular household’s psycological char-
acteristic, modelled by means of prospect theory (e.g. ”myopic loss aversion”). On
the base of the prospect theory the preferences structure is determinated according
to the steps:

• Compute the desired portfolio.
• Send buy/sell orders in order to match the desired portfolio.

2.2.2 Functions

The main goal of each household is to build and maintain the expected portfolio, following
his/her beliefs.

When an household enters the market, s/he will obtain a portfolio dependent on the
market state; so, the expected portfolio is only partially matched to her/his belief.

In order to achieve the desidered portfolio, each Household agent executes the following
actions:

Household receive info interest from bank the Household agent receives account in-
terest information from the Bank agent.

Household select strategy at each time step, which roughly corresponds to a day of
trading, each trader decides whether to update or not her/his beliefs, on the basis of
the information received by the firms. In the first case, the household computes the
new expected portfolio and creates the new pending orders with a given probability set
to a given value pco (presently, this value is 10%), or the old pending orders are kept
with a probability set to 1− pco.
In order to execute this transition function, the following utility functions have to be
activated:

• generatePendingOrders new pending orders are created;

8

• assets beliefs formation the belief formation mechanism for each asset is imple-
mented;

• computeUtilities asset utilities are computed;

• assetUtilitiesToWeights weights formation is made, accordingly to household’s
choices related to the set of orders;

• sendOrders the Household decides whether to update or not his/her beliefs. In
both cases, invoking this utility function, s/he sends the pending orders to the
ClearingHouse agent via messages. Afterward, the household receives a response
message containing information about the order execution. An order can be exe-
cuted totally or partially, or can remain un-executed.

Household update its portfolio the Household agent updates his/her portfolio and or-
ders, which remain pending until full fulfillment, or new belief formation. The portfolio
updating happens after receiving the command to execute orders. If a transaction hap-
pened, then the Portfolio has to be updated; in other words, the stock quantity and the
bank account have to be updated. In this phase of the simulation, household can get
or not his/her expected Portfolio.

2.2.3 Messages

accountInterest the household receives from the Bank a response message called accountIn-
terest, containing information about his/her account interest. This is an input message
to the transition function Household receive info interest from bank ;

info firm household agents receive information about firm’s financial status and stock prices
time series using info firm message. This is an input message to the transition function
Household select strategy ;

info bond household agents receive information from the Government agent about the
bonds, using info firm message. This is an input message to the transition function
Household select strategy ;

order through the order message, the orders are added to the pending orders collection
that is sent to the ClearingHouse agent. This is an output message from the transition
function Household select strategy ;

order status the households receive from the ClearingHouse a response message called
order status, containing information about the order execution. This is an input message
to the transition function Household update its portfolio;

bankAccountUpdate through the bankAccountUpdate message, the household’s bank ac-
count is updated. This is an output message from transition function
Household update its portfolio.

2.2.4 States

START HOUSEHOLD the household starts his/her trading activity in the financial mar-
ket. The Household receives information about his/her account interest from the Bank

9

agent, through the input message called accountInterest. This message causes the execu-
tion of the transition function Household receive info interest from bank and the house-
hold switches from START HOUSEHOLD state to SELECT STRATEGY state;

SELECT STRATEGY firm agents send information about their financial status and
their stock prices time series using info firm message. The info firm message causes
the execution of the transition function Household select strategy that generates the
output message order. The Household switches from SELECT STRATEGY state to
WAIT ORDER STATUS state;

WAIT ORDER STATUS the Household agent receives the order status message from
the ClearingHouse agent and then updates his/her portfolio through the execution
of the transition function Household update its portfolio. This function generates the
bankAccountUpdate output message.
The Household agent switches from WAIT ORDER STATUS state
to START HOUSEHOLD LABOUR ROLE state.

START HOUSEHOLD LABOUR ROLE when the Household agent is in this state,
his/her trading activity in the financial market ends, and s/he switches to the labour
market

2.3 ClearingHouse Agent

The ClearingHouse is an agent that implements the stock and the bond price formation
process. The price formation process is centralized and modelled according the clearing house
mechanism.

Buying and selling orders, issued by the households, are collected by the clearing house.
These orders are sent to an ADT called ClearingMechanism that builds the cumulative de-
mand and supply curve.

The market price of the asset is based on the intersection of the demand and supply
curve. The crossing point between demand and supply curve is chosen in order to maximize
the transactions’ amount. The limit orders are issued on the asset.

The ClearingHouse agent selects the limit orders for each traded stock type. For example,
if the traders issue limit orders on the ”Barclays” stock and on the ”UBS” Stock, the clearing
house will separate the ”Barclays” stock orders from the ”UBS” stock orders.

As soon as the new stock price is computed, the exchanges between sellers and buyers will
happen if the sell limit order price matches the buy limit order price. The exchange happens
at the cleared price.

2.3.1 Memory

assets Asset array variable, which rapresents the list of assets that are traded in the simu-
lations;

clearingMechanism istance of the ClearingMechanism ADT.

10

2.3.2 Functions

ClearingHouse receive info stock ClearingHouse agent gets information from the Firm
agent; the Firm agent has a stock database from which the ClearingHouse agent gets
the information about different stocks. The stocks number may change dynamically.
In fact, when a firm goes bankrupt, the related stock is deleted from the database;
when a firm enters the stock market, the related asset is added to the database. The
ClearingHouse gets information also about the last price value of the Firm.

ClearingHouse receive orders and run the ClearingHouse receives the orders and then
discriminates them by type of stock. The computation of asset prices is delegated
to the ClearingMechanism ADT. The ClearingHouse receive orders and run function is
described by the following steps:

• ReceiveOrdersOnAsset divides the orders on the base of different Stock types;

• ComputeAssetPrice: this function computes the new price value of each asset
and executes the rationing2 of the orders;

• SendOrderStatus: sends messages about the execution state of the orders to the
Household agent.

ClearingHouse send asset information creates an info Asset CH message for each Stock
that contains the informations about new Stock price and then sends the info asset CH
messages to Firm agent.

2.3.3 Messages

info firm the ClearingHouse agent receives information about the stock prices time series
from Firm agent. The info firm message is an input message of the transition function
ClearingHouse receive info stock.

order the ClearingHouse receives the orders from the households. The order message is an
input message of the transition function ClearingHouse receive orders and run.

order status the ClearingHouse agent sends the response message to the Household agent
containing information about the issued orders execution state.
The order status message is an output message of the transition function Clearing-
House receive orders and run

info Asset CH the ClearingHouse agent creates the info Asset CH message, for each asset,
containing information about the new asset price; info Asset CH message is sent from
ClearingHouse agent to Firm agent after that the new stock price is been computed,
so the Firm agent is updated on last price value. This is an output message from the
transition function ClearingHouse send asset information.

2.3.4 States

START CLEARINGHOUSE The ClearingHouse agent starts its trading activity in the
financial market. The ClearingHouse agent receives information about the stocks and

2it balances the quantity of demand and the quantity of supply

11

the bonds rispectly from the Firm and from the Government agents through the input
messages info firm and info bond.
These messages causes the execution of the transition function ClearingHouse receive info
and the switch from the START CLEARINGHOUSE state to RECEIVED INFO STOCK
state.

RECEIVED INFO STOCK The ClearingHouse agent receives the orders from both the
Household agent and from the Government agent through the input message called
order.
The order message activates the transition function ClearingHouse receive orders and run.
The orders are collected on the basis of different types of assets, and then the new asset
price is computed. This transition function generates the output message order status,
which informs the Household agent about the order execution state. The ClearingHouse
agent switches from RECEIVED INFO STOCK state to COMPUTED PRICE state.

COMPUTED PRICES After computing the new asset price, the transition function
ClearingHouse send asset information is activated. The ClearingHouse agent creates
the output message info Asset CH and sends information about stock and bond to
Government agent and to Firm agents, rispectively.
The agent then switches to the END CLEARINGHOUSE state.

END CLEARINGHOUSE the ClearingHouse agent ends its activity in the financial
market.

2.4 Firm Agent

The Firm is an agent which may own and trade stocks for specific operating purposes, like
for increasing its liquidity.

2.4.1 Memory

id integer that holds the ”identity” of the specific Firm agent.

earnings double variable holding the revenues minus total production costs. The revenue
is the income produced by a particular source

earnings payout double variable holding the number of dividends to pay

equity double variable holding total assets minus total debt

current shares outstanding double variable holding the number of shares owned by the
Firm

current dividend per share double variable holding the total dividends divided by the
number of shares

stock istance of the Stock ADT, which represents the stock entity of a given Firm and
carries information about time series of prices and returns

12

2.4.2 Functions

Firm send info the ClearingHouse agent gets information about stock prices and the
Household agent gets information about financial status of the Firm and also the prices
of the stock owned by the Firm

Firm receive stock info throught the info Asset CH message, the Firm agent receives
information about the new stock price by the ClearingHouse agent.

2.4.3 Messages

info firm this is an output message from the Firm send info transition function sent to
the ClearingHouse agent and to the Household agent, containing information about
earnings, dividend per share, equity, earnings payout and the specific stock issued on
the market. This informations is used by the Household agents in order to form his/her
beliefs about the fundamental price of each stock.

info Asset CH this is an input message sent by the ClearingHouse agent to the Firm agent,
containing information about the new market price of the specific stock issued by the
Firm agent

2.4.4 States

START FIRM the Firm agent starts its trading activity in the financial market; at the
start of each financial market session, the Firm sends the info firm message through
the transition function firm send info to ClearingHouse and Household agents, which
receive information about the specific stock and the Firm financial status

RECEIVED STOCK INFO at the end of each financial market session, the Firm receives
the info Asset CH message sent by ClearingHouse, then updates the time series of stock
prices agent

END FIRM the Firm agent ends its activity in financial market.

2.5 Bank Agent

The Bank is an agent that receives funds from Household agents, and use them to lend. Firm
and Household agents, when in the need of borrowing money, seek a subset of Banks, on the
basis the interest rate.

2.5.1 Memory

id integer that holds the ”identity” of the Bank agent.

2.5.2 Functions

Bank send accountInterest the Household agent gets information about his/her account
interest from the Bank agent, using accountInterest message

13

2.5.3 Messages

accountInterest the Household agent receives information about the account interest rate
from the Bank agent. This is an output message from transition function
Bank send accountInterest.

2.5.4 States

START BANK the Bank agent starts its activity in the financial market. The Bank sends
information about its account interest to the Household agent throught the output
message called accountInterest.
The transition function Bank send accountInterest is activated and the Bank agent
switches from START BANK state to BANK START CREDIT MARKET ROLE state

BANK START CREDIT MARKET ROLE the Bank agent starts its activity in the
credit market

2.6 Government Agent

The Government is an agent which may issue both short-term or long-term bonds in order
to finance its budget deficit.

2.6.1 Memory

id integer variable that identifies the ”identity” of the Government.

bond istance of the Bond ADT.

payment account double variable that holds the total liquidity owned by Government
owned in the Central Bank.

pending order is a collection of Order ADT, which represents the pending orders on the
bonds. Pending orders are orders issued by a trader, but not yet executed, or executed
only partially.

deficit double variable that returns the deficit of the Government agent.

day of month to act integer variable that holds the time step on which the Government
agent acts.

2.6.2 Functions

Government send info bond creates an output message called info bond that contains
the information about the Bond. The Government agent sends this message to House-
hold agent, who will buid its trading strategy and then to ClearingHouse agent who
gets information about the bonds, in order to compute the new price of the bond.

Government orders issuing if the deficit is < 0, the Government agent issues orders
whith a bond quantity that depends on its deficit and on the bond price. The issued
orders are added to a pending orders collection. This transition function sends an output
message called order to the ClearingHouse agent.

14

Government update its portfolio the Government agent updates its portfolio and its
orders. The updating of the portfolio happens after receiving the input message or-
der status from the ClearingHouse agent.

Government receive info bond the Government agent receives information about the
new bond price throught the input message info Asset CH

2.6.3 Messages

info bond the ClearingHouse and the Household agents receive information about the
Bonds issued by the Governament agent. This is an output message from the Gov-
ernment send info bond transition function.

order the ClearingHouse receives the orders from the Government agent throught the output
message called order from Government orders issuing.

order status the Government receives infomation from the ClearingHouse agent about the
issued orders execution state. The order status is an input message of the transition
function Government update its portfolio.

info Asset CH the ClearingHouse agent creates the info Asset CH message, containing
information about the new price of the bond. This is an input message to the Govern-
ment receive info bond transition function

2.6.4 State

START GOVERNMENT the Government agent starts its trading activity in the finan-
cial market.

GOVERNMENT SENT INFO BOND the Government sends information about the
Bond to the Household and to ClearingHouse agents using the message called info bond.
This is the output message from the transition function Government send info bond,
that causes the switch from START GOVERNMENT state
to GOVERNMENT SENT INFO BOND state.

GOVERNMENT SENT ORDER the Government orders issuing function is activated;
the output mesage order is sent to the ClearingHouse agent and the Government
switches to GOVERNMENT SENT ORDER state

GOVERNMENT PORTFOLIO UPDATED The Government receives from the Clear-
ingHouse the order status message that contains information about order execution
state, and then updates its portfolio throught the activation of the
Government update its portfolio function.
The agent switches to GOVERNMENT PORTFOLIO UPDATED state.

END GOVERNMENT When the agent is in this state, it has ended its activity in the
financial market

15

3 ADT

In the presented model, ADTs are data structures, with a set of related C functions, providing
non-trivial services to agents.

An ADT is typically contained in the data structure of an agent, in place of a set of
scattered variables logically linked together. For instance, the Stock ADT provides all the
information on a given stock, including its price series, liquidity, past returns.

The same result could have obtained putting directly all this information in the data
structure of the firm issuing the stock, but with much lower modularity and ease of future
extensions.

The following ADTs have been identified:

3.1 Asset

We have defined an ADT called Asset representing the ownership of a financial products of
the AFM model by a Household, a Firm or other agents.

Each Asset knows its money value, its last price value, the quantity owned by the House-
hold or issued by the Firm on the market.

3.1.1 Variables

id integer variable which identifies the ”identity” of the firm that issues the specific financial
product.

quantity integer variable that indicates the quantity of the asset that is issued by the Firm
on the market or owned by the Household.

lastPrice double variable that holds the last asset price value.

3.2 Stock

The Stock ADT is a specific financial security owned by a specific firm. It represents the kind
of the financial product that is issued by the firm.

3.2.1 Variables

id integer variable that identifies the Stock.

nrOutStandingShares integer variable that identifies the number of shares of a specific
Stock owned by a firm.

prices[HISTPRICES LENGHT] double array collecting the historical prices of the Stock.

returns[HISTRETURNS LENGHT] double array collecting the historical returns of
the Stock.

3.3 Bond

The Bond ADT represents a specific debt security issued by the Government agent.

16

3.3.1 Variables

id integer variable that identifies the specific Bond.

nr outstanding integer variable that holds the number of shares of a specific Bond owned
by the Government.

nr quantity integer variable which holds the Bond quantity that may still be traded.

face value double variable which holds the amount of money the Government will get back
to Household once a Bond expires.

nominal yield double variable that is the interest rate stated on the face of the Bond, which
represents the percentage of interest to be paid by the Government on the face value
of the Bond.

maturity day integer variable which represents the date on which the issuer has to repay
the nominal amount.

issue day integer variable date on which the bond is issued.

prices[HISTPRICES LENGHT] double array which collects the historical prices at which
investors buy the specific Bond.

returns[HISTRETURNS LENGHT] double array which collects the historical returns
of the specific Bond.

3.4 Order

Order is an ADT which represents a buy or sell limit order for a given security.

3.4.1 Variables

issuer integer variable holding the ”identity” of the Household who issued the order itself.

limitPrice double variable that rapresents the limit price of the issued order.

quantity integer variable that holds the quantity of the issued order.

assetId integer variable denoting the identity of the asset on which an order is issued.

3.5 Belief

On the base of financial status of the firms and their asset prices time series, the households
form their own beliefs; namely they estimate the future assets price at the their specific
”forward window”.

17

3.5.1 Variables

asset id integer variable holding the ”identity” of the asset (bond or stock).

expectedPriceReturns double variable holding the expected value of the price returns
computed on a past time window with backwardWindow lenght.

expectedTotalReturns double variable holding the expected value of the total returns
computed on a past time window with backwardWindow lenght. The total returns
are computed as the sum of price returns and dividend returns (for the stocks), or of
coupons (for the bonds).

expectedCashFlowYield double variable holding the expected dividends on a future time
window. The window lenght is equal to forwardWindow.

volatility double variable holding the volatility computed using the backwardWindow.

expectedEarning double variable holding the earnings expected value.

expectedEarningPayout double variable holding the expected value of the earnings pay-
out. The earnings payout refers to the portion of net income which is distribuited to
owners as dividend.

lastPrice double variable holding the last asset price which the istance of Belief refers to.

utility double variable holding the asset utility.

3.6 ClearingMechanism

The ClearingMechanism is an ADT which collects all orders sent by the ClearingHouse agent,
and then builds the cumulative demand and supply curve.

3.6.1 Variables

lastPrice double variable holding the new market price of the asset.

sellOrders Order array variable holding all sell limit orders issued by households.

buyOrders Order array variable holding all buy limit orders issued by households.

prices double array variable holding the historical asset prices.

18

4 State dependency diagram

The state graph in Fig. 1 shows the flow of activity in the complete AFM model.
The figure depicts for each agent a set of transition functions, and a set of states and

messages. Messages get the input data and, depending on them, cause the execution of a
specific transition function which updates the memory and the state of agents.

In the diagram, the states are represented as ellipses, the transition functions as rectangles
and the messages as arrows. The activities flow occurs through several layers (layer 0, layer
1,...,layer n).

Layer 0 denotes the entry of a specific agent in the AFM and the starting of her/his
activity; the final layer denotes the end of activity in the AFM and a possible swicth to
another market.
For instance, in layer 4 the Household agent is in the START HOUSEHOLD LABOUR ROLE
state; s/he leaves the AFM and enters the Labor market, while in layer 5 the Government
agent ends its activity in the AFM.

19

F
ig

ur
e

1.
 D

ep
en

de
nc

y
di

ag
ra

m
 o

f
th

e
A

F
M

 m
od

ul
e.

20

5 Verification and Validation of the AFM model

One of the most critical issues in developing software simulation models is the verification
and validation of the model itself.

Model verification usually refers to techniques used to ensure that the computer program-
ming and implementation of the theoretical model are correct.

Concerning the verification of the AFM model, we used a process testing based on the
CUnit in order to test the transition functions used in the AFM model just now. Obviously
the testing process will have to be extended to each function or procedure.

Model validation consists in understanding ”if the computerized model within its domain of
applicability possesses a satisfactory range of accuracy consistent with the intended application
of the model”[9].

Artificial financial markets can be characterized by a large number of parameters in order
to fit any kind of real data, but this approach usually leads to complicated models or at least
models extremely dificult to calibrate. A rule of thumb is to keep the model as simple as
possible, leaving out all unnecessary components.

The problem of validation can be addressed with the requirement that the implemented
model exhibits the main statistical properties of financial time series called ”stylized facts”.
The price time series produced by the artificial markets have to exhibit the same statistical
features of real markets. This is not a suggestion, it is the necessary condition that allows to
validate the model.

In the following subsections we will briefly list the most common ”stylized facts”, the veri-
fication of the model using CUnit testing process and the validation of the AFM implemented
with FLAME framework.

5.1 ”Stylized Facts”

It is well known that the economic time series of almost all financial assets exhibit a number
of non trivial statistical properties called ”stylized facts”. For a complete discussion about
”stylized facts” and statistical issues see Pagan [8], Cont [3], Farmer [5], Bouchaud [2].

There is a set of ”stylized facts” which appear to be the most important and common to
a wide set of financial assets:

• Random walk property of prices: financial asset prices evolve according to a random
walk and thus the prices of the asset market cannot be predicted;

• Fat tails of returns: empirical studies generally concur that at weekly, daily and higher
frequencies return distributions consistently exhibit more probability mass in the tails
and in the centre of the distribution than does the standard Normal. So, the most
important finding is that the distribution of returns is non Gaussian and heavy tailed;

• Volatility clustering : volatility measures the amplitude of price fluctuation of a financial
instrument within a specific time horizon. Volatility is often estimated by calculating
the standard deviation of the price values in a certain time window. In the time se-
ries of real stock prices, it is observed that the variance of returns or log-prices is high
for extended periods and then low for subsequent extended periods: this phenomenon
is called volatility clustering. Volatility clustering is strictly correlated with two more
dependence properties of returns financial time series: the absence of linear autocorrela-
tion and the presence of non linear autocorrelation. In the first case the autocorrelation

21

of raw returns is often insignificant, except for very small intraday time scales; in the
second case the autocorrelation of absolute returns and of their square, display a posi-
tive and slowly decaying autocorrelation, ranging from a few minutes to a several weeks
[4]. This phenomenon can be considered as a quantitative manifestation of the volatility
clustering itself, and suggests that bursts of volatility can persist for periods that range
from hours to days, weeks or even months.

5.2 CUnit testing process: Verification

Following the assumptions made in deliverable D1.2 [11], in order to test the AFM model
implemented with FLAME, we use CUnit, a testing framework developed for C code modules.

CUnit offers a set of headers and libraries that helps to automatically execute user-defined
tests, making easier to keep under control the system evolution.

In order to write CUnit tests, there are some steps to follow:

1. First of all, it is necessary to initialize the testing ”environment”; this can be done using
a main function, invoking the functions that create the test registry and a test suite
that contains all the unit tests; this suite can be executed every time the user needs to
run his tests.

It is also important to initialize the FLAME enviroment, such as global variables and
message boards, invoking those functions already present in the system.

This step initializes an instance of the AFM to a known state, so that it is possible to
run tests, obtaining pre-defined results if the tests are correctly passed.

2. The other item needed to run tests, is the test code itself; it is simply made by functions,
that must follow some naming conventions, that are automatically invoked by the test
suite.
A typical test function is divided in 3 major sections:

• initialization of the local variables and test pre-conditions;

• execution of the function to test, and check of the post-conditions;

• clean-up of the memory, in order to run new tests (i.e. memory deallocation,
variables reset, and so on...).

All the EURACE system is agent-based, so the first thing to do is to create one or more
new agents (only those needed in our test), initialize them and then add these new agents to
the system.These agents should also be referred to by pointers that trace these agents acting
in the environment.

The agents have their own variables, but only those needed in the test context should be
initialized. The same consideration is valid also for global variables.

Then, if our test needs to interact with the Message Board (MB), it is important to create
the MB and to check its correctness. If needed, it is possible to add pre-defined messages to
the message board, so agents can use them in their functions. This is important because in this
way it is possible to test the interaction between other EURACE modules, that communicate
each others using messages.

The next step involves the evaluation of the desired function and the ”assertions” checking
whether the function works properly. This is done directly invoking the function and then

22

using the assertion methods already existing in the framework, that allow users to compare
variable values and pre-set values fixed by programmers.

The test code is compiled together with the C files that contain the model to test, the
CUnit library and the messageboard library.

The test executable is then run; it outputs a brief summary of the results, such as the test
executed and the number of test failed and passed.
Figure 1 shows an example of unit test process executed on the transition function called
Household select strategy, used in the AFM model.

The Firm agent sends information about its financial status and its stock prices time
series using info firm message to the Household agent.

The info firm message causes the execution of the Household select strategy transition
function that generates the output message called order. Through this message, order is
added to the pending orders collection that is sent to the ClearingHouse. The Household
agent switches from SELECT STRATEGY state to WAIT ORDER STATUS state.

On the base of the preconditions and the input messages, we verified that the transition
function considered generates the correct answer from our test data. In fact the order output
message composed by the limit price and quantity to trade, is built and is inserted into the
Message Board.

Figure 1: Test structure of the Household select strategy transition function

5.3 Experimental results: Validation

We present some simulations that have been performed with the FLAME implementation of
the AFM model.

In order to investigate the validity of the implementation, we ran an isolated model of a
closed market and we analyzed the time series of the stocks prices and bond prices.

Our goal is to validate the model implemented with FLAME framework. We ran the
simulation process in order to understand if the model is capable to reproduce the main

23

”stylized facts” of the financial markets.
We considered an economy with two type of assets: bonds and stocks.
In all cases, the Government pays coupons and the Firms pay dividends, but we assume

that the earned cash is spent elsewhere, so that the economy is closed: the total amount of
cash C and stock S available in the economy remains constant over time.

Each simulation is performed with N = 2000 time steps and M = 1000 traders.
We performed many test runs varying the percentage of trading population. In a first

round of simulations, the agent population is composed of 90% random traders and the
remaining 10% is equally divided between chartists and fundamentalists.

We considered K = 2 different stock markets, one for each Firm, and only one bond.
Each trader i is initially endowed with a quantity ci of cash, a quantity si,k of stock k and

a quantity bi of bond.
Stocks dividends, bond coupons and interest on the bank accounts are distribuited every

six mounths, but this distribuition influences only the beliefs formation, beacause we supposed
that there isn’t any exogenus flow of cash.

The bond pays a semestrial coupon of 2% with respect to its face value.
The dividends evolve according to an exogenous stochastic process, estimated by the equation:1

log daτ = log daτ−1 + ga + ξaτ ∗ σa (1)

where ga is the characteristic growth of the dividend of asset a, σa is its characteristic standard
deviation, and ξaτ is a gaussian noise term with zero mean and unitary variance affecting the
process at day τ , (see deliverable D6.1 [10]). Furthermore, the Households do not receive any
compensation for their work.

We initialized other variable such as:

payment account = 50000;
asset amount = 1000;

Bank rate = 0.01
forwardWindow = uniform(10, 60)
backwordWindow = uniform(10, 20)
earnings payout = 10% of earnings

...

24

Figure 2 shows the daily time series prices of the Stock with id = 0, Figure 3 and 4 show
the autocorrelations of returns and absolute returns, respectively.

Figure 2: Time series of prices of Stock 0

Figure 3: Autocorrelation of returns of Stock 0

25

Figure 4: Autocorrelation of absolute returns of Stock 0

Figure 5 shows the daily time series prices of the Stock with id = 1, Figure 6 and 7 show
the autocorrelations of returns and absolute returns, respectively.

Figure 5: Time series of prices of Stock 1

26

Figure 6: Autocorrelation of returns of Stock 1

Figure 7: Autocorrelation of absolute returns of Stock 1

27

Figure 8 shows the daily time series prices of the Bond, Figure 9 and 10 show the auto-
correlations of returns and absolute returns, respectively.

Figure 8: Time series of prices of the Bond

Figure 9: Autocorrelation of returns of the Bond

28

Figure 10: Autocorrelation of absolute returns of the Bond

From a statistical perspective, the reported results show the typical “stylized facts” of price
time series in real markets, that is apparent geometric random walk of prices, “fat tail” of
return distribution, and characteristic behavior of return and absolute return autocorrelation
functions.

These results validate, at least statistically, the soundness of the market model and its
implementation.

6 Conclusions

In this report we described the FLAME implementation of the Artificial Financial Market
(AFM) developed in Eurace project, and demonstrated its use in several simulations.

During and after the development process, it’s fundamental to verify that the system
satisfies the requested specifications and provides the expected functionalities.

At first, we used ”Unit testing” process to validate each transition function of the AFM
system; then, in order to check the operation of all subsystems, or modules working together,
we executed a ”Functional testing” on the complete AFM system.

We ran the isolated Artificial Financial Market model and we conducted a statistical
analysis to check whether the model is able to reproduce the main stylized facts found in time
series of the stocks prices and bonds prices.

The results obtained correspond to those expected, and the system shown its ability to
perform the required functionalities.

Consequently, the validation test has been passed, and we can trust thet the system is
working correctly.

29

References

[1] Grady Booch. Object-Oriented Analysis and Design with Applications. Addison-Wesley,
2007.

[2] Jean-Philippe Bouchaud. Power-laws in economics and finance: some ideas from physics.
Science & Finance (CFM) working paper archive 500023, Science & Finance, Capital
Fund Management, August 2000.

[3] Cont. Scaling and correlation in financial data. May 1997.

[4] Rama Cont. Empirical properties of asset returns: stylized facts and statistical issues.
quantitative finance. Quantitative Finance, 1:223–236, 2001.

[5] J. Doyne Farmer. Physicists attempt to scale the ivory towers of finance. Computing in
Science and Engg., 1(6):26–39, 1999.

[6] Barbara Liskov and Stephen Zilles. Programming with abstract data types. In Proceed-
ings of the ACM SIGPLAN symposium on Very high level languages, pages 50–59, New
York, NY, USA, 1974. ACM.

[7] Brett McLaughlin, Gary Pollice, and David West. Head First Object-Oriented Analysis
and Design. Addison-Wesley, 2007.

[8] Adrian Pagan. The econometrics of financial markets. Journal of Empirical Finance,
3(1):15–102, May 1996.

[9] Robert G. Sargent. Verification and validation of simulation models. In WSC ’07:
Proceedings of the 39th conference on Winter simulation, pages 124–137, Piscataway,
NJ, USA, 2007. IEEE Press.

[10] UG. D6.1: Agent based models of financial markets. 2007.

[11] UNICA. D1.2: Agile methodologies for defining and testing agent-based models. 2007.

[12] USFD. D1.1: X-agent framework and software environment for agent-based models in
economics. 2007.

30

