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Reconsidered* 

A two-sector growth model is presented in which human capital is acquired through learning 
by doing. It is shown that, for both the competitive situation and the social optimum, endogenous 
growth cycles may be the outcome. Concerning the economic prerequisite for persistent 
oscillations we detect a bunching of investment at nearby dates leading economic variables to 
overshoot the long-run steady state values. This clustering of investment, for its part, may be 
caused by adjacent complementarity with respect to the stocks or by a sufficiently strong external 
effect of investment on the marginal product of physical capital or on the opportunity costs of 
investment. 

1. Introduction 
The importance of human capital for long-run economic growth has 

been increasingly stressed in a great many publications during the last few 
years. As to the formation of the stock of human capital, it is generally agreed 
upon that it is not given exogenously, but determined endogenously. Basi- 
cally, two different approaches can be distinguished. 

On the one hand, there are growth models in which human capital is 
built by explicitly devoting time to its formation (Lucas 1988; Laitner 1993; 
Caballe and Santos 1993). In these models, agents permanently increase their 
stock of knowledge by deciding how much to work and how much to learn. 
Thus, human capital can grow without an upper bound, leading to sustained 
per capita growth of economic variables. 

On the other hand, growth models exist in which positive externalities 
of physical capital, which are external to the firms, lead to increasing returns 
on a macroeconomic level thus generating sustained per capita growth (see 
e.g. Romer 1986). This approach goes back to Arrow (1962), who found out 
that acquiring new knowledge is strongly related to experience. For example, 
he refers to the airframe industry where a strong correlation between pro- 
ductivity growth and experience seems to exist. A measure for the change in 
experience may be seen in investment, and Arrow maintains that cumulative 
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investment therefore represents a good index for tile stock of huinan capital. 
Assuming that knowledge is formed as a by-product of investment also makes 
this variable endogenous. 

These models, however, are primarily interested in explaining long-run 
per-capita growth and, therefore, confine their analysis to balanced growth 
paths, that is, dynamic paths on which all economic variables grow at the same 
rate. Moreover, although the number of papers presenting endogenous 
growth models has sharply increased during recent years, the dynamics of 
such models are not yet well understood (el. Caballe and Santos 1993, 1043). 
This holds although there have emerged papers studying transitional dy- 
namics in growth models with human capital (see e.g., Mulligan and Sala- 
i-Martin 1993 or King and Rebelo 1993). Other papers which give an explicit 
analysis of the dynamics of growth models are the ones by Boldrin and 
Rustiehini (1994), Chamley (1993), Benhabib and Perli (1994), or Xie (1994). 
These authors examine their models as to the emergence of multiple steady 
states or indeterminacy of equilibrium paths. 

Another line of research was initiated by Benhabib and Nishimura 
(1979). These authors demonstrate, applying the Hopf-Bifurcation theorem, 
that n-sector growth models may, under certain conditions, reveal persistent 
oscillations. In this model certain factor intensities turn out to be necessary 
for growth cycles (see for example Nishimura and Takahashi 1992). But the 
analysis crucially depends on the fact that they only consider tangible capital 
goods which have a competitive price and their result is only valid for that 
sort of model and cannot be applied to models with human capital which do 
not have this property. Our goal with this paper, therefore, is to present a 
two-sector model of economic growth in which human capital is |brmed 
according to the learning by doing approach, and derive economic conditions 
which may prevent the system from converging to a steady state and instead 
bring about endogenous cycles. 

As to the empirical relevance of growth cycles, there has been a lively 
debate whether they exist or not. But this question seems to be very difficult 
to handle because little is known about the statistical reliability of the time 
series which are tested the further we go back in time. But nevertheless, as 
Rosenberg and Frischtak state, "No o n e . . ,  can doubt that they [dynamics 
of capitalist economies] experience significant long-term variations in their 
aggregate performance. The question is whether these long-term variations 
are more than the outcome of a suuunation of random events" (Rosenberg 
and Frischtak 1983, 146). 

The rest of the paper is organized as follows. In the next section, we 
present our model and derive necessary optimality conditions both for the 
competitive situation and the social optimum. In Section 3, we study the 
dynamic behavior of our model near the steady state and give conditions 
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which must be fulfilled for permanent oscillations of the variables. Section 
4 illustrates our analytical results with the help of a numerical example, and 
Section 5 finally concludes the paper. 

2. A Two-Sector Growth Model with Learning by Doing 
The starting point in models of growth theory is often the assumption 

of a single representative individual with household production whose goal 
consists in maximizing a discounted stream of utility, arising from consump- 
tion F[C(t)] - ST e-pt u(C(t)) dt, where p denotes the discount factor, u(.) 
is a concave utility function, and C(t) stands for the consumer good. The 
constraint this individual has to obey is given by a differential equation of the 
form K(t) = I(t) - ~K(t), with K(t) stock of physical capital, I(t) investment 
and ~5 depreciation rate. 1 The decision problem consists in determining what 
amount to consume and how much to invest and, thus, to increase the 
consumption possibilities in the future. 

In addition to the stock of physical capital which is formed as a result 
of investment we postulate that there are spiflover effects of investment 
which consist in building up a stock of human capital, denoted as A(t). More 
concretely, we suppose that A(t) reflects cumulated experience in the pro- 
duction of investment goods, that is, A(t) is built up according to Arrow's 
learning by doing approach, Arrow (1962). In contrast to Arrow, however, 
who uses a vintage approach with fixed coefficients, in our model technical 
progress is disembodied and the production function is not restricted to fixed 
coefficients (see Levhari 1966). Moreover, we suppose that the contribution 
of gross investment to the formation of human capital further back in time 
is smaller than recent gross investment. 

This assumption makes sense economically and can be formalized by 
defining the stock of human capital as an integral of past gross investment 
with exponentially declining weights put on investment flows further back in 
time (cf. Ryder and Heal 1973 or Feichtinger and Sorger 1988). A(t) then 
is given by A(t) = {p f t e~(.~-t) I(s)ds. The parameter ~0 represents the weight 
given to more recent levels of gross investment. The higher ~p, the larger is 
the contribution of more recent gross investment to the human capital stock 
in comparison to flows of investment dating back filrther in time. 

Furthermore, supposing a two-sector economy, the consumer good can 
be expressed as a function depending on the stock of human capital A(t), the 
stock of physical capital, and the investment good, i.e. C(t) = T(A(t),K(t),I(t)). 
This function denotes the production possibility frontier (PPF) and is for- 
really obtained by solving the static optimization problem of the consumer 

IThe dot over a variable denotes the derivative with respect to time. 
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good sector and the investment good sector respectively, and inserting the 
resulting inputs in the production function of the investment good sector. For 
a more detailed treatment of PPFs we refer to Boldrin (1989) or Benhabib 
and Nishimura (1979). 

The PPF 2 T(A,K,I) in our model is assumed to be C 2, to have TI(-) < 
0, and to be strictly concave in I. Furthermore, it is increasing in the factors 
A and K with decreasing marginal productivities and has an upper bound tbr 
each marginal product. 

The dynamic optimization problem of the representative individual 
then consists in maximizing F[T(A,K,I)] with respect to I subject to the 
constraint giving the evolution of physical capital. The evolution of the stock 
of human capital, however, is not taken into account by the representative 
individual. But this turns out to be non-optimal since it becomes intuitively 
clear that by only taking into account the effects of investment on the creation 
of physical capital neglects the positive effects of investment on the creation 
of human capital. It should also be noticed that the solution to this optimi- 
zation problem is equivalent to the solution of the competitive equilibrium. 
A formal proof can be obtained by adopting the arguments in the paper by 
Becker (1981). In what follows we refer to the situation where those spillovers 
are neglected as the competitive situation. 

The social optimum will be called the solution where those positive 
externalities of investment are intentionally taken account of. Formally, this 
can be achieved by considering an additional constraint in the individual's 
optimization problem. From above we know that the stock of human capital 
is formed as a by-product of accumulated weighted gross investment, A(t) : 
q~ St_~ e'P(s-t)I(s)ds. The evolution of A(t) is then given by the differential 
equation A(t) : cp(I(t) - A(t)) and the social optimal solution for the rep- 
resentative individual consists in maximizing his discounted stream of con- 
sumption subject to both the constraint giving the evolution of physical 
capital as well as the evolution of the stock of human capital. 

Summarizing our considerations from above, the competitive situation 
of our economy can be described by a solution to the optimization prob- 
lem (I): 

£ e-ptU(A(t) K(t), I(t))dt m a x  
{I( t )}  0 ' ' 

with U(A(t),K(t),I(t)) = u(T(A(t),K(t),I(t))) and subject to K(t) : I(t) - 8K(t), 
K(O) = ~ > 0. 

The social optimum can be described by a solution to our problem (II) 

Sin the following we will suppress the time argument where it is dispensable. 
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max ffoo e-°tU(A(t)' K(t), I(t))dt , 
{l(t)} 

with U(A(t),K(t),I(t)) = u(T(A(t),K(t),I(t))) and subject to K(t) = I(t) - 8K(t), 
K(0) = K o > 0 and P/(t) = cp(I(t) - A(t)), A(O) = A o > O. 

Before we go on and use necessary conditions to characterize an 
optimal solution, we show that a solution to our optimization problem exists. 
This is done in Theorem 1. 

THEOREM 1. Given the assumption of  strict concavity of  U(A,K,I) in I, there 
exists a unique path o f  investment that solves the optimal control problem (I) 
and the optimal control problem (II). 

The proof, which is available on request in an appendix, follows from 
a standard result in control theory (cf. Seierstad and Sydsaeter 1987, 237) and 
uses the fact that the domain of "all possibly optimal values for the rate of 
investment is bounded. This is a consequence of our assumption that the 
marginal product of each factor in the PPF is bounded by above, 

Given Theorem 1 we can now characterize the solution to our opti- 
mization problems. First let us look at problem (I), the competitive situation. 
The Hamiltonian function for that problem then is given by the expression 
H(.) = 7oU(A,K,I) + 71(1 - ~SK), with 71 denoting the current-value co-state 
variable or shadow price of capital. The first-order condition for I(t) to yield 
a maximmn for problem (I) then is -Ut(-) = ~'1 (for 7o = 1). The evolution 
of 71 is given by ~/1 = (P + 8)71 - UK('). Here, it should be noted that the stock 
of human capital also evolves over time, as a by-product of investment, and 
thus influences the evolution of physical capital, of its shadow price and of 
investment. But this property is not explicitly taken into account by our 
individual. Furthermore, the limiting transversality conditions are given by 
l i m t ~  e-°t yl(t)K(t ) = 0. Note that the transversality conditions are necessary 
in this case (demonstrated in the appendix available on request). This result 
follows from Michel's corollary to his theorem (Michel 1982, 977-79; see also 
Seierstad and Sydsaeter 1987, 244-55). Before analyzing the dynamic be- 
havior of our variables let us briefly tuna to the social optimization problem, 
denoted as problem (II). 

The only difference to problem (I) consists in the fact that in this 
problem the individual that may be termed a social planner takes account of 
the positive spillovers of investment. The Harniltonian function is now writ- 
ten as H(.) = 7oU(A,K,I) + 71(I - ~K) + ~,.2cp(I - A), with 72 denoting the 
shadow price of human capital. Note that T2 only represents a shadow price, 
whereas 71 represents the competitive price of the investment good as well 
(see e.g. Boldrin 1989, 235). The rate of investment is now set according to 
-Ul( ')  = 71 + q~'2. Note that for interior solutions to problem (I) and (H), 
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which may be j ustified by imposing I nada-type conditions on T(.), it can easily 
be seen that ~'o can be set equal to 1. It can already be seen that in problem 
(II) investment is always larger than in problem (I). The reason is that now 
investment is not only paid its competitive price Y1 but also an additional 
weighted (shadow) price gr,&, giving the value of an additional marginal unit 
of human capital. The dynamic behavior of?2 is described by "12 = (P + q0)y.~ 
- UA(.). The limiting transversality conditions for that case are given by 
l i m t ~  e-O'(yl( t)K(t)  + ~2(t)A(t)) = O. 

In the next section, we will investigate the dynamic behavior and try 
to give economic conditions for a possibly cyclical behavior of the variables. 

3. The Dynamic Behavior--Analytical Results 

The Compet i t ive  E c o n o m y  
Let us first look at the competitive economy. We know that the evo- 

lution of physical capital and human capital is described by the differential 
equations K(t) = I(t) - ~K(t) and A(t) = ~p(I(t) - A(t)) ,  respectively, hwest- 
ment in these two equations is chosen so that H(.) = %U(A,K,I )  + 71(I - 8K) 
is maximized, giving - U t ( A , K , I )  = Y1, as already mentioned in the last 
section. Investment I(t) is thus a function implicitly defined by A,K,y1, that 
is, I(t) = I(A(t) ,K(t) ,yl( t)) .  As to the evolution of the shadow price ~fi (t), we 
know from optimal control theory that it is given by the differential equation 
~'i(t) = p71(t) - ~H(.)/~K, so that the system of differential equations can be 
written as 

l((t) = I(A(t) ,  K(t), ?~(t)) - 8K(t), (1) 

~(t) = (p + 8)71(t) - U~(.), (2) 

A(t)  = ~I(A(t) ,  K(t), 7~(t)) - ~A(t)  . (3) 

To determine the dynamic behavior of our system of differential equa- 
tions, let us first investigate the question of the existence of a steady state in 
the sense of a rest point, that is, a situation where the derivatives with respect 
to time equal zero. Here we can state Lemma 1. 

LEMMA 1. Under  a slight addi t ional  assumption,  the sys tem o f  dif ferential 
equations (1)- (3)  has a unique  opt imal  s teady state K*,TT,A *. 
The proof of this lemma is contained in the appendix available on request. 

To derive the local dynamic behavior of the economic variables we now 
compute the Jacobian of (1)-(3) and determine its eigenvalues. The deriv- 
atives of l( t)  = I(A(t),K(t),T1 (t)) are easily obtained by implicit differentiation 
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a s  I a ( .  ) = - -  U I A / U I I  , IK(.) = - Un~/Un, Iv1(') = - I/UII > O. Thus, the Jacobian 
can be seen to have the following form, 

= 

- -  [llK/Utl - ~ - 1 / U I I  - UIA / UII 

--UKK+U2K/UII U I K / U I I + P + ~  --UKA+UIKUIA/UII 

--q)UIK / UII - q l /  UII -q)  - q)UIA/ UII 

The characteristic equation of our system is 

~3 + ( - t r a ce  j)~2 + w2~, + ( - d e t ] )  = 0 ,  

with W e being defined as 

W2 = a 2 2  a2a + + , 
la32 a331 la:31 a33 la21 a22 

with a~j element of the i-th row and j - th  column of J. 
As mentioned in the introduction, our goal with this paper is to study 

the out of steady-state dynamics of our growth model and especially to work 
out under what conditions endogenous growth cycles may appear. From the 
technical point of view, this may be achieved by applying the Hopfbifilrcation 
theorem. The prerequisite for that phenomenon lies in the presence of two 
eigenvalues crossing the imaginary axes, thus causing a change in the qual- 
itative property of the solution of the system of differential equations. For 
our system we can use Lemma 2 in order to gain further insight in the 
properties of our economic model. 

LEMMA 2. A necessary and sufficient condition fo r  the characteristic equa- 
tion ~ 3 + (_traceJ)ke  + w 2  ~ + ( - d e t J )  = 0 to possess a pair o f  two purely 
imaginary roots +wi, i = qc-~, w ;a 0 is W 2 > 0 and W 2 • ( - t raceJ)  + detJ = 
O. 
A proof of that Lemma can be found in Asada and Semmler (t995). 

Applying this Lemma to our problem we have to find out that the 
second condition can be determined technically and becomes extremely 
complicated. Moreover, it is not apt to economic interpretation so that we 
will focus on the first one. Doing so, we calculate W. 2 as W 2 = - a  + V I + c, 
with a = 8(p + 8) + pq0 > 0, V~ = ( - 1 / U , ) [ ( p  + 28)UIK + UKI<], c = 
- (~ /U , ) (pU~a  + Ur, A). 

It can immediately be seen that the elements W e is composed of may 
have positive or negative signs except a. 

If  we want to give an economic interpretation to these terms, we can 
first state that V 1 can be interpreted as a measure giving complementarity 
over time. I fV  1 > 0 we can speak of complementar i~ between adjacent dates 
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(or briefly adjacent complementarity) with respect to the capital stock K. That 
means increasing investment at time t 3 implies a reallocation of resources 
from distant dates t 1 to nearby dates t z. Correspondingly, if l:' 1 < 0 we speak 
of complementarity between distant dates (distant complementarity) with 
respect to the capital stock, meaning that an increase in investment at time 
t a leads to a reallocation of resources from nearby dates to distant ones tl. :~ 

Looking at the constant W 2 in our model, we see that adjacent com- 
plementarity is a necessary condition for endogenous growth cycles if c < 0. 
What does this mean? If there is adjacent complementarity with respect to 
the capital stock, then an economy which intends to do a lot of investment 
at the end of a year would tend to invest little at the beginning of that year 
but much in the middle of the year, while with distant complementarity that 
economy would invest a lot at the beginning and relatively little in the middle 
of the year. In other words, adjacent complementarity tZavors investment at 
nearby dates leading to a clustering of investments. To investigate this 
mechanism further let us examine a country with an initially low stock of 
physical capital. To reach the steady-state level of capital, investment will 
increase. Given adjacent complementarity, however, this increment in in- 
vestment leads to a further rise at nearby dates, which eventually makes this 
country achieve a higher capital stock than the steady-state level. This over- 
shooting may be intensified by the economy getting used to low consumption 
so that there is no rush to raise it to the long-run optimal level as Ryder and 
Heal (1973, 15) formulated it. It should be noted that this overshooting is 
caused by adjacent complementarity of the physical capital stock and de- 
termined by the preferences and by the technology of our economy. If there 
is distant complementarity, no cycles are possible for c < 0. 

The sign of c, however, may also be positive and, thus, lead to endog- 
enous growth cycles even for distant complementarity of physical capital. 
Looking at c, we see that it is determined by the effect of an increase in human 
capital on the marginal products of physical capital and of investment in U(.). 
But the increase in human capital in our learning by doing model is nothing 
else than the external effect of an additional unit of investment. Therefore, 
we can state that the expression c is determined by the external effect of 
investment on the opportunity cost of investment and on the marginal 
product of capital in the PPF. 

To be more precise, let us look a little closer at the expression c, which 
is given by c = (-~p/Uu)(pUia + UKa). The signs of UKa(') and Uta(.) are 
obtained as UKa(') = u'(')TKa + u"(')Ta(')TK(') and U1a(-) = u'(.)T1A(.) + 
u"(.)TI(.)TA(.). At the steady state, it must hold that -/'1(.)( p + 5) = TK('), so 

3For a detailed derivation of these concepts, see Wan (1970), Ryder and Heal (1973), or 
Dockner and Feichtinger (1991). 
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that c may be written as c = -(~p/Uu)(pu'(.)Tia + u'(.)Tlca - 8Tt(') TA(')u'(')). 
This shows that c can only be positive if the external effect of investment (via 
an increase of human capital) shows strong positive effects on the marginal 
productivity of physical capital (if TKA > 0) and/or strong positive effects on 
the opportunity cost of investment, that is if it reduces the opportunity costs 
(if TtA > 0). 

These considerations show that the cross derivatives of U(-) cannot be 
determined a priori and depend on the exact specification of the functions. 
However, it can clearly be stated what conditions nmst be fulfilled so that c 
is positive and, thus, growth cycles may occur. For c to be positive there must 
be a strong positive external effect of investment on the marginal productivit? 
of physical capital in the PPF or on the opportunity cost of investment. If 
giving up consumption does not only raise physical capital but additionally 
also shows strong externalities at the margin, meaning that an increase in 
investment reduces the opportunity costs of investment via an increase in A 
and/or raises the marginal productivity of physical capital, then society is 
more willing to forgo consumption and instead make investments. This holds 
because our economy can thus not only increase the future capital stock but 
also raise the marginal productivity of capital and/or reduce the opportunity 
cost of investment. Thus investment becomes more profitable and/or 
cheaper. This mechanism may lead to a bunching of investment at nearby 
dates, causing the overshooting of the long-run steady state values just as in 
the case of adjacent complementarity with respect to the capital stock. 

We can now summarize our results in the fi)llowing Theorem. 

THEOREM 2. A necessary condition forpersistent oscillations of  the economic 
variables consists in (i) adjacent complementarity with respect to the physical 
capital stock or (ii) a strong positive external effect of  investnxnt on the 
marginal product of  physical capital or investnwnt. 
The proof of that theorem follows from Lemma 2 together with the char- 
acterization of W 2. 

It should be noted that this theorem only provides us with necessaul 
conditions for persistent growth cycles. Because of those reasons, later on, 
we will present a numerical example to illustrate our results. 

Up to now we have derived results for our competitive economy and 
have seen that, under certain conditions, endogenous growth cycles may be 
tile outcome. As usual, in this sort of model the social optimum does not 
coincide with the competitive solution so that policy makers have to give 
incentives for investment. They can do this by imposing taxes on consumption 
which may then be used to subsidize investment. However, the question that 
remains is what time paths may be the outcome in the social optimum. This 
question will be investigated in the next subsection. 
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The Social O p t i m u m  
As already mentioned in the previous section, for the social optimum 

maximization problem the rate of investment is at any point of time higher 
than in the competitive economy. The maximum principle now gives 
- U I ( A , K , I )  = YJ + qY[2, implicitly defining investment. The derivatives can 
again be calculated as Ia(.) = -- UIa/U H, 11((.) = - Um/U u, Ivl (-) = - 1/UH > 
0 and Ire(.) = -q ) /U  H > 0. Substituting these relations in the other necessary 
conditions given by the differential equations describing the evolution of 
physical capital, the stock of human capital and its shadow prices, respec- 
tively, then gives the so-called Hamiltonian system, completely describing the 
dynamic behavior of our economic variables. This system may be written as 

I((t) = I(A(t) ,  K(t), y~(t), T2(t)) - 5K( t ) ,  (4) 

A(t) = ipI(A(t), K(t), T~(t), T2(t)) - ipA(t) , (5) 

~'l(t) = (p + ~)~/l(t) - UK(.), (6) 

~2( t )  = ( o  + ~)~ ,2( t )  - UA( ' )  . (7) 

Before going into the details of our analysis we state Lemma 3. 

LEMMA 3. Under  a slight addit ional  assumption,  the canonical sys tem (4)-(7)  
possesses a un ique  opt imal  s teady state K*,A*,y]~,~'~ '. 
The proof of this lemma is also available in the appendix on request. 

As in the preceding section we now calculate the Jacobian matrix near 
the steady state and determine its eigenvalues. The Jacobian is seen to be 

j =  

--UIK/UI I - 

- -  (pU iK / U lI 

-Ur~ + u ~ / u .  

ur~u Ai 
--UKA + m  

Ui1 

-UtA/Ul l  - I / U I I  -¢,.p/Utl 

--¢,.pUIA/UII -- ¢,.p - Ip /Ui t  -Ip2/Uli 

ur.iu a~ 
--UKA + p + ~ + UtK/U11 ¢,pUK1/Utl 

UH 

-- U~,t + U~t / Utl UtA / UH p + ~ + lpUra / Utl 

with the eigenvalues given by 

-- 2 

W 1 is defined as 

W l  = all a13 + +2 
la31 a331 l a42  a44 la32 a341 ' 
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with % again denoting the element of the ith row andj th  column of J (see 
Dockner and Feichtinger 1991). 

Given the explicit characterization of the eigenvalues of our Jacobian 
matrix, we can use Lemma 4 in order to investigate whether persistent cycles 
may also be possible in the social optimum. 

LEMMA 4. The conditions det J > ( w J 2 )  2 and detJ - ( W J 2 )  2 - p2(WJ2) 

= 0 are necessary and sufficient f o r  all eigenvalues to be complex and two 
having zero real parts'. 

The proof of that Lemma can be found in D ockner and Feichtinger (1991). 
For our system the constant W 1 and the determinant of the Jacobian 

can be written as follows: 

W1 = - a  - b + VI + V2 -- 2cpUtc,~/U, , 

detJ  = ab - aVe - bV1 + (pUKa/Un[8(p + q3) + q~(p + 8)], 

de t J  - ( W J 2 )  2 = 1 / 4 [ - ( a  - b) 2 - (VI + V2) 2 - 2(a - b)(Ve - V0] 

where a = 8(p + 8), l0 = ~(p + ~), V 1 = - (1/Un)  [(p + 28)UtK + U~] ,  V 2 -- 
- ( ~ / U u )  [(p + 2~)U~A + U~].  

It can already be seen that, as in the competitive situation, two purely 
imagina W eigenvalues may occur, but again it is not possible to give sufficient 
conditions leading to that phenomenon because of the complexity of the 
constant W~ and of the determinant of the Jaeobian. Nevertheless, we car, 
give necessa W conditions which may be interpreted economically. 

To do so, we first consider our model ~br the case Ur, A = 0. Given 
Lemma 4 we see that both W1 > 0 and det] - (Wi/2) 2 > 0 are necessa W 
conditions for persistent growth cycles. For W~ to be positive at least one of 
the stocks must show adjacent complementarity and the degree of adjacent 
complementarity has to be sufficiently high. If one stock is characterized by 
distant complementarity while the other has adjacent complementarity, we 
see from the condition det J - (w~/2) 2 > 0 that the stock with the higher 
depreciation rate must show adjacent complementarity. If both stocks have 
adjacent complementarity the one with the higher depreciation rate must 
have a higher degree of coinplementarity than the one with the lower 
depreciation rate. 

In contrast to the competitive situation we must now be aware that the 
social planner intentionally takes account of the positive spillover effects of 
investment. Therefore, the degree of complementarity with respect to the 
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stock of human capital must also be taken into account in determining the 
conditions under which cycles may turn out to be optimal. 

It should be recalled that we have derived these results with the 
assumption that UKA = 0. Before we give up this assumption we summarize 
our results in Theorem 3. 

THEOnEM 3. Given UK.,(.)= 0 the following turns out to be true: a necessary 
condition for persistent endogenous growth cycles is (i) that the stock with 
the higher depreciation rate shows adjacent complementarity while the other 
has distant complementarity or (ii) that the degree of complementarity of the 
stock with the higher depreciation rate is largerthan the one of the other stock 
if  both stocks have adjacent complementarity. 

Let us now investigate what may happen if both stocks have distant 
complementarity but investment shows a large external effect influencing the 
marginal productivity of capital in the PPF. Then, just as in the competitive 
economy, both W~ and detJ  may become positive so that endogenous growth 
cycles are possible. This holds because the sign of Urn(') may be positive if 
Ttca(.) > 0. Thus, we can state THEOREM 4. 

THEOREM 4. If  both stocks have distant complementarity, a necessary con- 
dition for persistent endogenous growth cycles is a sufficiently strong external 
effect of investnuent on the marginal productivity of physical capital in the 
PPF. 

Up to now we have shown for our two-sector economy 4 that a clustering 
of investments may lead economic variables to overshoot the long-run steady- 
state values and generate sustained cycles if certain conditions are met. 
However, it was not possible to derive sufficient conditions within the an- 
alytical model. In the next section, we will therefore present some numerical 
examples to illustrate our analytical findings. 

4. A Numerical Example 
As mentioned above, in this section we will illustrate our analytical 

results with a numerical example. To do this, we study a two-sector economy 
with a linear utility function, u(C) = C. The PPF is given by T(A,K,I) = a~K 
+ a~A - a3I 2 / (A + K) + bllK + b2IA. The evolution of the capital stock is 
given by / (  = I - 8K. For the parameter values we choose a 3 = 1,al = 0.35, 
a z = 1, b z = -0.25.  p, 15 and ¢p per period are set to P = 0.25, 15 = 0.75 and 
(p = 0.5. Taking data aggregated in 5-year periods means that the annual 

4It can be shown that for a one-sector economy similar conditions may lead to endogenous 
cycles. 
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discount rate is 5%, the depreciation rate per year 15% and the annual q) is 
% = 0.1. The value % = 0.1 states that the contribution of investment five 
years back to the actual stock of human capital is exp ( -5 .  %) = 0.6065. 

Using the parameter values from above and taking b 1 as bifurcation 
parameter we see that for bl,crit = 0,16541, two eigenvalues of the Jacobian 
matrix for system (1)-(3) are purely imaginary. The steady states for this value 
ofb 1 are given by K* = 3.17228, q(~' = 0.9272186, A* = 2.37921, I* = 2.37921, 
C* = 2.3031218, G N P *  = 4.5091696. GNP( t )  denotes gross national product 
and is given by GNP( t )  = C(t)  + 71(t)I (t). Note that 71(t) denotes the price 
of investment in terms of the consumer good which is used as numeraire. It 
should also be mentioned that for these parameter values and the steady state 
values the PPF fulfills all of the properties required in the analytical part. The 
derivative of the real part with respect to the bifurcation parameter of the 
purely imaginary eigenvalues at bj = b 1,,At, is Re~,~ (1) 1,,,~t) = 4.8916 indicating 
the emergence of a Hopf bifurcation. 5 

By varying b I we determine the sign of V 1 giving the degree of com- 
plementarity of the capital stock with respect to time. As to the degree of 
adjacent complementarity, we calculate for V a, V] = 1.36981 whereas both 
- a  and c are negative, for b I = bl,c,~t. Taking b 1 = 0.16 a little smaller than 
b l,c,~t, we calculate the eigenvalues of the Jacobian as ?~1,2 = -0.0291483 +_ 
0.626392 i, £:~ = -0.359898 indicating that for this case the dynamic behavior 
of the variables is characterized by a stable focus, with the path converging 
to the steady state in the long run. If we take b I a little larger than 0.16541 
and take b 1 = 0.16542 we can observe that we now have stable limit cycles. 
In Figure 1 it can be seen how the trajectory approaches the limit cycle in 
the three dimensional (I(t) - GNP( t )  - A(t))  phase diagram, demonstrating 
that it is an attractor. Let us next present a numerical example demonstrating 
the possibility of endogenously generated growth cycles for the social opti- 
l n u n l .  

Once more, we suppose a linear utility function and the PPF fbr the 
social optimization problem is again assumed to be given by T(A,K,I)  = a t K  
+ a,zA - a3Ie/(A + K) + b l l K  + b,2IA. The evolution of the capital stock is given 
by K = I - 8K and human capital follows A = (p(l - A). For the parameter 
values we now choose a.~ = 0.15, a I -- 3.2, a e = 2.175, b e = 3.0855. The annual 
discount rate and depreciation rate is now set to 19 = 0.25 and ~5 = 0.035. ~p 
per year is given by (p = 0.15. Again, b~ is selected as bifurcation parameter. 
Forming the Hamiltonian (taking explicitly the constraint A = {p(I - A) into 
consideration), maximizing with respect to I and substituting this value in the 
differential equations then yields the modified Hamiltonian system (4)-(7). 

5For the numeric'a] computations and the solution of the differential equations we used the 
computer software Mathematica (see Wolfram Research 1991). 

599 



Alfred Greiner 

A(t)  
.39 ~.38 I ( t )  

2.37 

2.38 

2.39 

4 .52  

4.51 1 

G ~ ( t )  
4 5  

4 .4 .  ¢ 

,~ .4~ 

Figure 1. 

/ 
/ /  

/ 

To investigate this dynamic system we used the code BIFDD. 6 It turns 
out that this system has two purely imaginary eigenvalues for b a = - 0.712938. 
The derivative of the real part of the purely imaginary eigenvalues with 
respect to b 1 at b~ = bLcri t is given by Re~,](bl.c,~t) = 24.73895. BIFDD also 

6For a description of the related code BIFOR2 we refer to Hassard, Kazarinoff, and Wan 
(1981). 
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calculates the coefficient [~z determining the stability of the limit cycles which 
is given by 112 = -12.99039. As I]z < 0 the limit cycles are stable. The 
steady-state values for these parameters are now seen to be K* = 18.46036, 
A* = 0.6461126, ~,~ = 9.612614, 7~' = 10.42188, I* = 0.6461126, C* = 53.2597, 
GNP* = 59.470531. Again, it can be demonstrated that the PPF fulfills all 
of the properties required in the analytical part. 

Given this information we can solve our system of differential equa- 
tions. For slightly larger values of b I than bl,crit we again can observe stable 
limit cycles, 

Figure 2 shows how the trajectory approaches the limit cycle in the 
three dimensional (I(t) - A(t)  - K(t)) phase diagram, with b 1 = -0.7129. 

As to the economic mechanisms for our numerical example we see that 
there is distant complementarity with respect to physical capital, with V 1 = 
- 14.5202, and adjacent complementarity with respect to human capital, with 
Vz = 16.2148 for b 1 = bl,c,~t and the corresponding parameter values. Note 
that b I again influences the value of V 1, thus determining the degree of 
complementarity of the stock of capital over time. As to the cross derivative 
T~4 we see that it is negative in the steady state, but extremely small, namely 
Tr, a = -1.79554 • 10 -'5 so that this effect can be neglected. 

5. Conclusion 
In this paper we have demonstrated that a basic two-sector growth 

model with learning by doing may lead to persistent cycles if it is assumed 
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that investment at different dates has difterent weights coi~cerning its coll- 
tribution to the stock of human capital, which is certainly reasonable. The 
conditions responsible for that phenomenon are intuitively plausible a~l<t 
have a nice economic interpretation. 

Thus, we have seen that a model of economic growth may have richer 
dynamics than just monotonic convergence to a balanced growth path. But 
the emergence of persistent growth cycles is only one aspect. For example, 
Lemmas 1 and 3 in the paper point to the possibility of multiple steady states. 
A more thorough analysis of this aspect, however, was beyond the scope of 
this paper. Besides multiple steady states, the possible indeterminacy of 
equilibrium paths would also be worth investigating. Therefore, this paper 
underlines the necessity of further studies examining transitional dynamics 
in growth models along the line of the papers in the special JET volume (see 
Journal of Economic Theory, Vol. 63, No. 1, 1994). 
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Appendix 

List of Symbols 

C = 

I =  
A =  

9 = 
t =  

F =  
K=  

T (A,K,I) = 
U (A,K,I) = 

~= 
q~= 

H(.) = 

_ 

] :  
aij = 

W~,i= 
k :  

a, al, a2, 
a3, b, hi, b2, c = 

v , , i  = 1 , 2  : 

I ] 2  = 

consumption. 
investment. 
human capital. 
time preference. 
time. 
utility function. 
physical capital. 
PPF. 
u(T(A,K,I)); u(.): utility function. 
depreciation rate. 
weight given to investment as to the formation of 
human capital. 
0,1,2: co-state variables. 
Hamiltonian. 
denotes steady states. 
Jacobian. 
element of the ith row andj th  column of a matrix. 
1,2: constant. 
eigenvalues. 

constants. 
measure for the degree of complementarity of 
physical and human capital. 
coefficient giving the stability of the limit cycle. 
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