Using structural equation modeling to detect measurement bias

F.J. Oort, S. Jak, M.T. Barendse, B.L. King-Kallimanis

University of Amsterdam

Working Group Structural Equation Modeling, February 2009, Berlin
• Measurement bias is defined as a violation of measurement invariance

• Measurement invariance:

$$f_1(X | T = t, V = v) = f_2(X | T = t)$$

- X are measurements (e.g., item scores)
- T is what we want to measure (e.g., math ability)
- V are any other variables (e.g., ethnicity)
1. For every two chickens of farmer A, farmer B has five. All together the farmers have 637 chickens.

What is the number of chickens of farmer B?

(a) 180
(b) 315
(c) 390
(d) 455
Measurement invariance

\[f_1(X \mid T = t, V = v) = f_2(X \mid T = t) \]
Measurement bias (uniform)

\[f_1(X \mid T = t, V = v) \neq f_2(X \mid T = t) \]
Measurement bias (nonuniform)

\[f_1(X \mid T = t, V = v) \neq f_2(X \mid T = t) \]
Background

• Mellenbergh (1985, 1989)
 – Conditional independence: \(f_1(X|T,V) = f_2(X|T) \)
 – Item response theory (item bias, DIF)

• Meredith (1993)
 – Measurement invariance
 – Factor analysis

• Oort (1991)
 – Generalizations (multigr., RFA, longit.)
 – Structural equation modeling
Measurement invariance in SEM

• Measurement bias with respect to groups
 – multigroup factor analysis

• Measurement bias with respect to any variable
 – factor analysis with exogenous variables (RFA or MIMIC)

• Measurement bias in longitudinal data
 – longitudinal factor analysis
Latent variable model of the measurement of T_1 and T_2 through variables X_1 through X_8, in two groups of respondents.
Bias detection in multigroup SEM

• Measurement bias can be detected by testing:
 – equality constraints on factor loadings
 – equality constraints on intercepts
 – equality constraints on residual variances

• Pros:
 – uniform and nonuniform bias can be detected

• Cons:
 – few group memberships at a time
 – limited to continuous variables (?)
Measurement invariance in SEM

• Measurement bias with respect to groups
 – multigroup factor analysis

* Measurement bias with respect to any variable
 – factor analysis with exogenous variables
 (RFA or MIMIC)

• Measurement bias in longitudinal data
 – longitudinal factor analysis
Bias detection through RFA

Measurement bias

Structural Equation Model
Latent variable model of the measurement of T_1 and T_2 through measurements X_1 through X_8, with possible measurement bias in X_3 and X_6 with respect to possible violators V_1 and V_2.
Bias detection in RFA

• Measurement bias can be detected
 – by testing the effect of V on X

• Pros:
 – bias with respect to any variable V can be detected
 – bias with respect to multiple V simultaneously
 – feasible with modest sample sizes

• Cons:
 – only uniform bias can be detected (?)
Bias detection through RFA

Measurement bias

Structural Equation Model
Measurement invariance in SEM

- Measurement bias with respect to groups
 - multigroup factor analysis
- Measurement bias with respect to any variable
 - factor analysis with exogenous variables (RFA or MIMIC)

* Measurement bias in longitudinal data
 - longitudinal factor analysis
Latent variable model of the measurement of T_1 and T_2 through variables X_1 through X_8, at two measurement occasions.
Bias detection in longitudinal SEM

• Measurement bias can be detected by testing:
 – equality constraints on factor loadings
 – equality constraints on intercepts
 – equality constraints on residual variances

• Cons:
 – not too many variables at a time
 – larger sample sizes required

• Pros:
 – uniform and nonuniform bias can be detected
 – extension with exogenous V variables (?)
Latent variable model of the measurement of T_1 and T_2 through variables X_1 through X_8, at two measurement occasions, with possible response shift caused by V_1 and V_2.
Using structural equation modeling to detect measurement bias

• Frans Oort:
 – Introduction

• Suzanne Jak:
 – Bias in dichotomous item responses

• Mariska Barendse:
 – Non-uniform bias in the RFA method

• Bellinda King-Kallimanis:
 – Bias in longitudinal data