zum Hauptinhalt wechseln zum Hauptmenü wechseln zum Fußbereich wechseln Universität Bielefeld Play Search

Computational Biology

© Universität Bielefeld

Research

Zum Hauptinhalt der Sektion wechseln

Our Projects

C4 Photosynthesis

Photosynthesis in its three varieties, such as C3 photosynthesis, C4 photosynthesis and CAM, is responsible for almost the entire storage of sunlight in organic carbon compounds.

Transcriptional Responses

For adapting to changing biotic and abiotic environmental conditions plants change their transcriptome from which the proteome and finally the phenotype can be derived.

Network Analyses

Biological systems are constructed as robust networks. Networks at the level of transcriptomes can be determined by analyzing time series, various textures and various conditions or a combination of all effects.

Overview

Our methods are computer-based and lab-based analyses of „big data“. Our topic revolves around primary productivity of plants, especially photosynthesis.

Almost all live on earth depends directly or indirectly on photosynthesis. This complex process uses sunlight to convert CO2, NH4+, SO42-, and H2O to organic molecules. CO2 is taken up from the environment into the leaves in a controlled process, initially fixed by Rubisco, and converted to sugars and other building blocks in the Calvin-Benson-Bassham cycle. Photosynthesis is finely tuned to acclimate to pathogen attack, herbivory, and varying drought, salt, cold, heat, and light conditions, and it has evolved adaptations such as C4 photosynthesis or CAM to make it more efficient.

C4 photosynthesis is a turbocharger of photosynthesis and its presence leads to highly productive plants or to plants which are drought and/or salt resistant. The pathway evolved to combat the key weakness of Rubisco, its temperature-dependent sensitivity to O2. Using transcriptomics we analyze the molecular identity of the enzymes, transporter and regulators involved in the trait. We kinetically model subsystems to understand anatomical adaptations. We use stoichiometric models to analyze the trait evolution in silico. Ultimately, we would like to be able to reconstruct.

When we study transcriptional responses to changing environments or mutations, we do it to understand not only the photosynthetic part of the response but all changes occurring in the transcriptome. Essentially, we try to understand the „wiring“, the plant’s information processing which controls the response and we try to resolve which biochemical and anatomical modules are activated to produce the visible phenotypes. Most of these analyses are collaborative and depend on the interests of our collaborators. After finishing the analyses we integrate the results into our larger models and networks.

[Hier Anpassungen einfügen]

"Start-Paket"

-> Überschriften: Umbruch in diversen Überschriften verhindern. -> Ohne ANpassung: Überschriften werden, wie normaler Text, umgebrochen.
-> Seitliche Navigation: Die Section Content "[Hier Anpassungen einfügen]" wird normalerweise in der Navigation angezeigt. Diese Anpassung entfernt den Link. -> Ohne Anpassung: Anpassung-Section wird in der Navigation angezeigt.
-> Rahmenfarbe von Tab-Gruppen in Fakultätsgrün umstellen. -> Ohne Anpassung: Farben sind manchmal Uni-Grün.
-> Alle <section>-Elemente auf 100% Breite setzen und anzeigen.
-> Alle Links schwarz
-> Textboxen innerhalb von Groups auf 100% Breite [Portal-Page] -> Groups auf 100% Breite [Portal-Page]
Zum Seitenanfang