Arbeitsgruppe Digitale Basiskompetenzen. (2020). DiKoLAN - Digitale Kompetenzen für das Lehramt in den Naturwissenschaften. https://dikolan.de/
Arnold, E. (2013). Experiments and Simulations: do they fuse? In E. Arnold & J. Duran (Hrsg.), Computer Simulations and the Changing Face of Scientific Experimentation (S. 46–75). Cambridge Scholars Publishing.
Bader, H.‑J. & Lühken, A. (2018). Experimente. In K. A. Sommer, J. Wambach-Laicher & P. Pfeifer (Hrsg.), Unterricht Chemie. Konkrete Fachdidaktik Chemie: Grundlagen für das Lernen und Lehren im Chemieunterricht (1. Auflage, S. 460–470). Aulis.
Beisbart, C. (2018). Are computer simulations experiments? And if not, how are they related to each other? European Journal for Philosophy of Science, 8(2), 171–204. https://doi.org/10.1007/s13194-017-0181-5
Elgin, C. (2007). Understanding and the Facts. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 132(1), 33–42. http://www.jstor.org/stable/25471843
Eyert, F. (2020). Agent-based Modeling und Politikberatung. In T. Klenk, F. Nullmeier & G. Wewer (Hrsg.), Handbuch Digitalisierung in Staat und Verwaltung (S. 1–12). Springer Fachmedien Wiesbaden; Imprint Springer VS. https://doi.org/10.1007/978-3-658-23669-4_8-2
Falvo, D. A. (2008). Animations and Simulations for Teaching and Learning Molecular Chemistry: International Journal of Technology in Teaching and Learning, 4(1), 68–77.
Frigg, R., Thompson, E. & Werndl, C. (2015). Philosophy of Climate Science Part II: Modelling Climate Change. Philosophy Compass, 10(12), 965–977. https://doi.org/10.1111/phc3.12297
Grüne-Yanoff, T. & Weirich, P. (2010). The Philosophy and Epistemology of Simulation: A Review. Simulation & Gaming, 41(1), 20–50. https://doi.org/10.1177/1046878109353470
Guala, F. (2002). Models, Simulations, and Experiments. https://www.semanticscholar.org/paper/Models%2C-Simulations%2C-and-Experiments-Guala/5bc7679ef0f926038aa95304254551e00362501e
Heider-Lang, J. & Merkert, A. (2019). Digitale Transformation in der Bildungslandschaft: Ein Mehrperspektivischer Zugang. In J. Heider-Lang & A. Merkert (Hrsg.), Digitale Transformation in der Bildungslandschaft - den analogen Stecker ziehen? (S. 7–24). Rainer Hampp Verlag.
Helgeson, C., Srikrishnan, V., Keller, K. & Tuana, N. (2021). Why Simpler Computer Simulation Models Can Be Epistemically Better for Informing Decisions. Philosophy of Science, 88(2), 213–233. https://doi.org/10.1086/711501
Helmut Fischler, Jochen Peuckert, Helmut Dahncke, Helga Behrendt & Jenny Frost. (2001). Concept Mapping as a Tool for Research in Science Education. In H. Behrendt (Hrsg.), Research in science education - past, present, and future: [… based on papers presented at the 2nd International Conference of the European Science Education Research Association (E.S.E.R.A.) held in Kiel August 31 to September 4 1999] (S. 217–224). Kluwer. https://doi.org/10.1007/0-306-47639-8_29
Humphreys, P. (2004). Extending ourselves: Computational science, empiricism, and scientific method. Oxford University Press. https://academic.oup.com/book/11160 https://doi.org/10.1093/0195158709.001.0001
Krell, M., Upmeier zu Belzen, A. & Krüger, D. (2014). Students’ Levels of Understanding Models and Modelling in Biology: Global or Aspect-Dependent? Research in Science Education, 44(1), 109–132. https://doi.org/10.1007/s11165-013-9365-y
Krüger, D. & Upmeier zu Belzen, A. (2021). Kompetenzmodell der Modellierkompetenz – Die Rolle abduktiven Schließens beim Modellieren. Zeitschrift für Didaktik der Naturwissenschaften, 27(1), 127–137. https://doi.org/10.1007/s40573-021-00129-y
Landriscina, F. (2013). Simulation and learning: A model-centered approach. Springer. https://doi.org/10.1007/978-1-4614-1954-9
Morgan, M. S. (2002). Model Experiments and Models in Experiments. In L. Magnani & N. J. Nersessian (Hrsg.), Model-Based Reasoning: Science, Technology, Values (S. 41–58). Springer US. https://doi.org/10.1007/978-1-4615-0605-8_3
Morrison, M. (2009). Models, measurement and computer simulation: the changing face of experimentation. Philosophical Studies, 143(1), 33–57. https://doi.org/10.1007/s11098-008-9317-y
Nave, K. (2023). Charakterisierung situativer mentaler Modellkomponenten in der Chemie und die Bildung von Hypothesen. Eine qualitative Studie zur Operationalisierung mentaler Modell-komponenten für den Fachbereich Chemie. Logos Verlag. http://www.content-select.com/index.php?id=bib_view&ean=9783832583811
Novak, J. D. & Gowin, D. B. (1986). Learning how to learn (reprint). Cambridge Univ. Press. https://www.cambridge.org/core/books/learning-how-to-learn/D4E082D454735D8CC7FEDADFA25A3B99 https://doi.org/10.1017/CBO9781139173469
Orgill, M., York, S. & MacKellar, J. (2019). Introduction to Systems Thinking for the Chemistry Education Community. Journal of Chemical Education, 96(12), 2720–2729. https://doi.org/10.1021/acs.jchemed.9b00169
Parke, E. C. (2014). Experiments, Simulations, and Epistemic Privilege. Philosophy of Science, 81(4), 516–536. https://doi.org/10.1086/677956
Parker, W. S. (2020). Evidence and Knowledge from Computer Simulation. Erkenntnis. Vorab-Onlinepublikation. https://doi.org/10.1007/s10670-020-00260-1
Peperkorn, Y. (2024, 1. August). SIMMS – Lerneinheit zur chemischen Energetik und Kinetik. https://simms-uni-bielefeld.de/
Plass, J. L., Homer, B. D. & Hayward, E. O. (2009). Design factors for educationally effective animations and simulations. Journal of Computing in Higher Education, 21(1), 31–61. https://doi.org/10.1007/s12528-009-9011-x
Rost, M. & Knuuttila, T. (2022). Models as Epistemic Artifacts for Scientific Reasoning in Science Education Research. Education Sciences, 12(4), 276. https://doi.org/10.3390/educsci12040276
Roush, S. (2018). The epistemic superiority of experiment to simulation. Synthese, 195(11), 4883–4906. https://doi.org/10.1007/s11229-017-1431-y
Saam, N. J. (2017). What is a Computer Simulation? A Review of a Passionate Debate. Journal for General Philosophy of Science - Zeitschrift für Allgemeine Wissenschaftstheorie, 48(2), 293–309. https://doi.org/10.1007/s10838-016-9354-8
Schwedler, S. & Kaldewey, M. (2020). Linking the submicroscopic and symbolic level in physical chemistry: how voluntary simulation-based learning activities foster first-year university students’ conceptual understanding. Chemistry Education Research and Practice, 21(4), 1132–1147. https://doi.org/10.1039/C9RP00211A
Seoane, M. E., Greca, I. M. & Arriassecq, I. (2022). Epistemological aspects of computational simulations and their approach through educational simulations in high school. SIMULATION, 98(2), 87–102. https://doi.org/10.1177/0037549720930084
Terzer, E. & Upmeier zu Belzen, A. (2008). Naturwissenschaftliche Erkenntnisgewinnung durch Modelle – Modellverständnis als Grundlage für Modellkompetenz. Vorab-Onlinepublikation. https://doi.org/10.4119/UNIBI/ZDB-V16-I1-182 (33-56 Seiten / Zeitschrift für Didaktik der Biologie (ZDB) - Biologie Lehren und Lernen, Bd. 16 (2007).
Upmeier zu Belzen, A. & Krüger, D. (2010). Modellkompetenz im Biologieunterricht: Struktur und Entwicklung (Bd. 16). https://www.researchgate.net/publication/260658001_Modellkompetenz_im_Biologieunterricht_Struktur_und_Entwicklung
Upmeier zu Belzen, A. & Krüger, D. (2019). Modelle als methodische Werkzeuge begreifen und nutzen: Empirische Befunde und Empfehlungen für die Praxis. In J. Groß, M. Hammann, P. Schmiemann & J. Zabel (Hrsg.), Biologiedidaktische Forschung: Erträge für die Praxis (1st ed. 2019, S. 129–146). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-58443-9_8
Winsberg, E. (2009). A tale of two methods. Synthese, 169(3), 575–592. https://doi.org/10.1007/s11229-008-9437-0
Winsberg, E. (2010). Science in the age of computer simulation. The Univ. of Chicago Pr.
Winsberg, E. (2019). Computer Simulations in Science. The Stanford Encyclopedia of Philosophy. https://plato.stanford.edu/entries/simulations-science/