zum Hauptinhalt wechseln zum Hauptmenü wechseln zum Fußbereich wechseln Universität Bielefeld Play Search

Math. Fi­nan­ce Se­mi­nar (Win­ter­se­mes­ter 2016/2017)

Das In­sti­tut für Ma­the­ma­ti­sche Wirt­schafts­for­schung ver­an­stal­tet im Rah­men des Bie­le­feld Sto­chastic Af­ter­noon re­gel­mä­ßig Se­mi­na­re zum Thema Fi­nanz­ma­the­ma­tik. Das Pro­gramm des ak­tu­el­len Se­mes­ters fin­den Sie hier.

14. De­zem­ber 2016 (Zeit: 16-17 und 17-18, Ort: V3-​201):

Mi­cha­el Kup­per (Uni­ver­si­ty of Kon­stanz)

Titel: Dua­li­ty for­mu­las for ro­bust pri­cing and hedging in dis­cre­te time

Abs­tract: We focus on ro­bust super-​ and sub­hedging dua­li­ties for con­tin­gent claims that can de­pend on sever­al un­der­ly­ing as­sets. In ad­di­ti­on to strict super-​ and sub­hedging, we also con­sider re­la­xed ver­si­ons which, in­s­tead of eli­mi­na­ting the short­fall risk com­ple­te­ly, aim to re­du­ce it to an ac­cep­ta­ble level. This yields ro­bust price bounds with tigh­ter spreads. As ap­p­li­ca­ti­ons we study strict super-​ and sub­hedging with ge­ne­ral con­vex tran­sac­tion costs and tra­ding cons­traints as well as risk based hedging with re­spect to ro­bust ver­si­ons of the aver­age value at risk and en­tro­pic risk me­a­su­re. As ano­ther ap­p­li­ca­ti­on we dis­cuss ge­ne­ra­li­zed Frechet-​Hoeffding bounds. Our ap­proach is based on re­p­re­sen­ta­ti­on re­sults for in­crea­sing con­vex func­tio­nals. The talk is based on a joint work with Pa­trick Che­ri­di­to and Lu­do­vic Tang­pi.


Ma­thi­as Beiglbo­eck (TU Wien)

Titel: The Geo­me­try of Model Un­cer­tain­ty

Abs­tract: The over-​confidence in ma­the­ma­ti­cal mo­dels and the failu­re to ac­count for model un­cer­tain­ty have fre­quent­ly been bla­med for their in­fa­mous role in fi­nan­cial cri­ses. Se­rious con­side­ra­ti­on of model am­bi­gui­ty is vital not only in the fi­nan­cial in­dus­try and for pro­fi­ci­ent re­gu­la­ti­on but also for uni­ver­si­ty level tea­ching. Re­mar­kab­ly, it re­mains an open chal­len­ge to quan­ti­fy the ef­fects of model un­cer­tain­ty in a co­he­rent way. From a ma­the­ma­ti­cal per­spec­ti­ve, this is a de­li­ca­te issue which tou­ches on deep clas­si­cal pro­blems of sto­chastic ana­ly­sis. In re­cent work, we es­tab­lish a new link to the field of op­ti­mal trans­port. This yields a power­ful geo­metric ap­proach to the pro­blem of model un­cer­tain­ty and, more ge­ne­ral­ly, the theo­ry of sto­chastic pro­ces­ses.

11. Ja­nu­ar 2017 (Zeit: 16-17 und 17-18, Ort: V3-​201):

Huyen Pham (Uni­ver­si­ty Paris Di­de­rot)

Titel: Ro­bust Mar­ko­witz mean-​variance port­fo­lio selec­tion under am­bi­guous vo­la­ti­li­ty and cor­re­la­ti­on

Abs­tract: The Mar­ko­witz mean-​variance port­fo­lio selec­tion pro­blem is the cor­ner­stone of mo­dern port­fo­lio al­lo­ca­ti­on theo­ry. In this talk, we study a ro­bust con­ti­nuous time ver­si­on of the Mar­ko­witz cri­ter­ion when the model un­cer­tain­ty car­ries on the variance-​covariance ma­trix of the risky as­sets. This pro­blem is for­mu­la­ted into a min-​max mean-​variance pro­blem over a set of non-​dominated pro­ba­bi­li­ty me­a­su­res that is sol­ved by a McKean-​Vlasov dy­na­mic pro­gramming ap­proach, which al­lows us to cha­rac­te­ri­ze the so­lu­ti­on in terms of a Bellman-​Isaacs equa­ti­on in the Was­ser­stein space of pro­ba­bi­li­ty me­a­su­res. We pro­vi­de ex­pli­cit so­lu­ti­ons for the op­ti­mal ro­bust port­fo­lio stra­te­gies in the case of un­cer­tain vo­la­ti­li­ties and am­bi­guous cor­re­la­ti­on bet­ween two risky as­sets, and then de­ri­ve the ro­bust ef­fi­ci­ent fron­tier in closed-​form. We ob­tain a lower bound for the Shar­pe ratio of any ro­bust ef­fi­ci­ent port­fo­lio stra­te­gy, and com­pa­re the per­for­mance of Shar­pe ra­ti­os for a ro­bust in­ves­tor and for an in­ves­tor with a mis­spe­ci­fied model.


Jan Kall­sen (Uni­ver­si­ty of Kiel)

Titel: On port­fo­lio op­ti­miza­ti­on under small fixed tran­sac­tion costs

Abs­tract: While op­ti­mal in­vest­ment under pro­por­tio­nal tran­sac­tion costs is quite well un­der­stood by now, less has been done in the pre­sence of fixed fees for any sin­gle tran­sac­tion. In this talk we con­sider the asym­pto­tics ofthe no-​trade re­gi­on for small fixed costs. More spe­ci­fi­cal­ly, we sketch the ri­go­rous ve­ri­fi­ca­ti­on for a ge­ne­ral uni­va­ria­te Ito pro­cess mar­ket under ex­po­nen­ti­al uti­li­ty. The talk is based on joint work with Mark Feo­do­ria.

8. Fe­bru­ar 2017 (Zeit: 16-17 und 17-18, Ort: V3-​201):

Frank Seif­ried (Uni­ver­si­ty of Trier)

Titel: Some Re­cent Re­sults on Continuous-​Time Re­cur­si­ve Uti­li­ty

Abs­tract: This talk pres­ents some re­cent work on the founda­ti­ons of continuous-​time re­cur­si­ve uti­li­ty. The first part ad­dres­ses the clas­si­cal Epstein-​Zin (EZ) pa­ra­me­triza­ti­on of re­cur­si­ve uti­li­ty. We es­tab­lish exis­tence, un­i­quen­ess, mo­no­to­ni­ci­ty, con­ca­vi­ty, and a uti­li­ty gra­di­ent ine­qua­li­ty for continuous-​time EZ uti­li­ty in a fully ge­ne­ral se­mi­mar­tinga­le set­ting. This ge­ne­ra­li­zes exis­ting re­sults for Brown-​ian fil­tra­ti­ons as in Schro­der and Skia­das (1999) and Xing (2015). In the se­cond part, buil­ding on an abs­tract frame­work for non­line­ar ex­pec­ta­ti­ons that com­pri­ses g-, G- and ran­dom G-​expectations, we de­ve­lop a theo­ry of back­ward non­line­ar ex­pec­ta­ti­on equa­tions (BNEEs) of the form

Xt = εt [ t ∫ T g(s,X)m(ds) + ξ ], t ∈ [0,T].

These can be thought of as BSDEs under non­line­ar ex­pec­ta­ti­ons. We pro­vi­de exis­tence, un­i­quen­ess, and sta­bi­li­ty re­sults and es­tab­lish con­ver­gence of the as­so­cia­ted discrete-​time non­line­ar ag­gre­ga­ti­ons. BNEEs emer­ge na­tu­ral­ly in the con­text of re­cur­si­ve pre­fe­ren­ces when am­bi­gui­ty is taken into ac­count. We apply our re­sults to show that discrete-​time re­cur­si­ve uti­li­ty with am­bi­gui­ty con­ver­ges to the non­line­ar sto­chastic dif­fe­ren­ti­al uti­li­ty of Chen and Epstein (2002) and Epstein and Ji (2014).


Mete Soner (ETH Zü­rich)

Titel: Tra­ding with mar­ket im­pact

Abs­tract: It is well known that large tra­des cause un­fa­voura­ble price im­pact re­sul­ting in tra­ding los­ses. These los­ses are par­ti­cu­lar­ly high when the un­der­ly­ing in­stru­ment is not li­quid en­ough or when the trade size is large. Other type of mar­ket fric­tions such as tran­sac­tion costs also cause si­mi­lar ef­fects. The pro­blem of op­ti­mal exe­cu­ti­on is a re­la­ted pro­blem which has been re­cent­ly wi­de­ly stu­di­ed. In joint work with Peter Bank and Mo­ritz Voss from TU Ber­lin we stu­di­ed the tracking pro­blem in such mar­kets. The ques­ti­on we study is to ef­fi­ci­ent­ly con­st­ruct a tracking port­fo­lio once a de­si­red port­fo­lio pro­cess is given. Per­fect tracking is not pos­si­ble due to mar­ket fric­tions. The ques­ti­on is very much in ana­lo­gy with image pro­ces­sing in which one is given a noisy image. We for­mu­la­te the pro­blem as qua­dra­tic op­ti­miza­ti­on pro­blem and pro­vi­de an ex­pli­cit so­lu­ti­on using Ric­ca­ti equa­tions.

Zum Seitenanfang

Datenschutzeinstellung

Diese Webseite verwendet Cookies und ähnliche Technologien. Einige davon sind essentiell, um die Funktionalität der Website zu gewährleisten, während andere uns helfen, die Website und Ihre Erfahrung zu verbessern. Falls Sie zustimmen, verwenden wir Cookies und Daten auch, um Ihre Interaktionen mit unserer Webseite zu messen. Sie können Ihre Einwilligung jederzeit unter Datenschutzerklärung einsehen und mit der Wirkung für die Zukunft widerrufen. Auf der Seite finden Sie auch zusätzliche Informationen zu den verwendeten Cookies und Technologien.