zum Hauptinhalt wechseln zum Hauptmenü wechseln zum Fußbereich wechseln Universität Bielefeld Play Search

Pro­jects

© Uni­ver­si­tät Bie­le­feld

Pro­jects

Zum Haupt­in­halt der Sek­ti­on wech­seln

Quick Links

Head

Prof. Dr. Chris­tia­ne Fuchs

Room V9 - 132
Phone +49 521 106-​2576
Email chris­tia­ne.fuchs@uni-​bielefeld.de

Of­fice

Ni­co­le Schü­ler

Room U9 - 148
Phone +49 521 106-​6913
Email sek-​emp-methoden@uni-​bielefeld.de

Jobs

If you are in­te­rested in a po­si­ti­on as post­doc­to­ral re­se­ar­cher, doc­to­ral stu­dent or stu­dent as­si­stant, plea­se con­tact us!

This is a selec­tion of cur­rent and pre­vious re­se­arch pro­jects, in ad­di­ti­on to those listed on the fun­ding page and the in­di­vi­du­al mem­bers‘ home­pages. Code and more in­for­ma­ti­on is pro­vi­ded via the Git­Hub re­po­si­to­ry.

Pro­spec­ti­ve COVID-​19 Co­hort Mu­nich (KoCo19)

In­ves­ti­ga­ting the im­pact of house­hold struc­tu­res on di­sea­se spread (source: Houda Ya­qi­ne, HMGU).

Main con­tacts from our group: Mercè Garí, Ronan Le Gleut, Chris­tia­ne Fuchs

Under the lead of the Di­vi­si­on of In­fec­tious Di­sea­ses and Tro­pi­cal Me­di­ci­ne, we par­ti­ci­pa­te in the pro­spec­ti­ve COVID-​19 Co­hort Mu­nich (KoCo19) study. We con­tri­bu­te th­rough sta­tis­ti­cal ana­ly­ses and sto­chastic mo­del­ling, es­pe­cial­ly using sto­chastic dif­fe­ren­ti­al equa­ti­on mo­dels which ac­count for di­sea­se trans­mis­si­on across re­gi­ons and wit­hin house­holds.

More in­for­ma­ti­on: Pro­ject web­page

Selec­ted re­fe­ren­ces

  • Le Gleut, R., Plank, M., Pütz, P., … Fuchs, C., Cas­tel­let­ti, N., KoCo19 study group (2023). The re­p­re­sen­ta­ti­ve COVID-​19 co­hort Mu­nich (KoCo19): from the be­gin­ning of the pan­de­mic to the Delta virus va­ri­ant. BMC In­fec­tious Di­sea­ses (Vol. 23, Issue 1). Sprin­ger Sci­ence and Busi­ness Media LLC. https://doi.org/10.1186/s12879-​023-08435-1
  • Con­ten­to, L., Cas­tel­let­ti, N., Raimúndez, E., Le Gleut, R., Schäl­te, Y., Sta­por, P., ... KoCo19 study group. (2023). In­te­gra­ti­ve mo­del­ling of re­por­ted case num­bers and se­ro­pre­va­lence re­ve­als time-​dependent test ef­fi­ci­en­cy and in­fec­tious con­tacts. Epi­de­mics, 43, 100681.
  • Pritsch, M., Radon, K., Ba­ku­li, A., Le Gleut, R., Ol­brich, L., Gug­gen­büehl Nol­ler, J., Saat­hoff, E., Cas­tel­let­ti, N., Garí, M., Pütz, P., Schäl­te, Y., Frahnow, T., Wöl­fel, R., Rothe, C., Plet­schet­te, M., Me­ta­xa, D., Fors­ter, F., Thiel, V., … Rieß, F. (2021). Pre­va­lence and Risk Fac­tors of In­fec­tion in the Re­p­re­sen­ta­ti­ve COVID-​19 Co­hort Mu­nich. In In­ter­na­tio­nal Jour­nal of En­vi­ron­men­tal Re­se­arch and Pu­blic Health (Vol. 18, Issue 7, p. 3572). MDPI AG. https://doi.org/10.3390/ijerph18073572
  • Radon, K., Ba­ku­li, A., Pütz, P., Le Gleut, R., Gug­gen­buehl Nol­ler, J. M., Ol­brich, L., Saat­hoff, E., Garí, M., Schäl­te, Y., Frahnow, T., Wöl­fel, R., Pritsch, M., Rothe, C., Plet­schet­te, M., Rubio-​Acero, R., Beyerl, J., Me­ta­xa, D., Fors­ter, F., … Thiel, V. (2021). From first to se­cond wave: follow-​up of the pro­spec­ti­ve COVID-​19 co­hort (KoCo19) in Mu­nich (Ger­ma­ny). In BMC In­fec­tious Di­sea­ses (Vol. 21, Issue 1). Sprin­ger Sci­ence and Busi­ness Media LLC. https://doi.org/10.1186/s12879-​021-06589-4

Un­cer­tain­ty Quan­ti­fi­ca­ti­on - From Data to Re­li­a­ble Know­ledge

Sources of un­cer­tain­ty (brown), me­thods for trea­ting un­cer­tain­ty (blue) and ex­per­ti­se re­qui­red (grey) (source: Chris­tia­ne Fuchs, HMGU).

Main con­tacts from our group: Rui Maia, Kai­nat Khowa­ja, An­net­te Möl­lerHouda Ya­qi­neJonas Bauer, Ju­li­an Wä­sche, Chris­tia­ne Fuchs

How will the cli­ma­te de­ve­lop, how se­cu­re is our en­er­gy sup­ply, and what chan­ces does mole­cu­lar me­di­ci­ne offer? The ra­pidly in­crea­sing amount of data of­fers ra­di­cal­ly new op­por­tu­nities to ad­dress today’s most pres­sing ques­ti­ons of so­cie­ty, sci­ence, and eco­no­my: Data, out­co­mes and pre­dic­tions are, how­e­ver, sub­ject to un­cer­tain­ties. The goal of the pro­ject Un­cer­tain­ty Quan­ti­fi­ca­ti­on is to un­der­stand these un­cer­tain­ties th­rough me­thods of pro­ba­bi­li­ty theo­ry, and to in­clu­de them into re­se­arch and ou­treach. The pro­ject con­nects ap­p­lied re­se­ar­chers from the four re­se­arch fields Earth & En­vi­ron­ment, En­er­gy, Health, and In­for­ma­ti­on among each other and with Helm­holtz data sci­ence ex­perts, as well as ex­ter­nal uni­ver­si­ty part­ners from ma­the­ma­tics and eco­no­metrics.

More in­for­ma­ti­on: Pro­ject web­page

Mo­de­ling and Baye­si­an In­fe­rence for Dif­fu­si­ons

Sam­ple paths of jump pro­cess (left), ODE (midd­le) and SDE (right) (source: Chris­tia­ne Fuchs, HMGU).

Main con­tacts: Houda Ya­qi­neJu­li­an Wä­sche, Chris­tia­ne Fuchs

Dif­fu­si­on pro­ces­ses are a pro­mi­sing in­stru­ment to rea­listi­cal­ly model the time-​continuous evo­lu­ti­on of phe­no­me­na in bio­lo­gy as they com­bi­ne the ad­van­ta­ges of pro­ba­bi­listic mo­dels and dif­fe­ren­ti­al equa­ti­on mo­dels. How­e­ver, both the cor­rect ap­pro­xi­ma­ti­on of such dy­na­mics in terms of dif­fu­si­on pro­ces­ses and the sta­tis­ti­cal in­fe­rence for dif­fu­si­ons pro­ves to be chal­len­ging in prac­ti­ce.

We are in­ti­ma­te­ly in­vol­ved in dif­fu­si­on mo­del­ling and the de­ve­lo­p­ment of Baye­si­an esti­ma­ti­on tech­ni­ques for dif­fu­si­ons. The ap­p­li­ca­ti­on of dif­fu­si­on pro­ces­ses to fluo­re­scence mi­cro­scopy data and single-​cell data yields pro­mi­sing re­sults and shows the po­ten­ti­al of this ap­proach.

Re­fe­ren­ces

Spa­ti­al or­ga­niza­ti­on and sci­en­ti­fic col­la­bo­ra­ti­on at the Helm­holtz Zen­trum Mün­chen and the Bie­le­feld Uni­ver­si­ty

source: Han­nah Busen, HMGU

Main con­tacts: Han­nah Mar­chi,  Chris­tia­ne Fuchs

It seems evi­dent that spa­ti­al pro­xi­mi­ty bet­ween re­se­ar­chers may lead to more fre­quent or more in­ten­se col­la­bo­ra­ti­on than bet­ween sci­en­tists who work at large di­stance from each other. We hy­po­the­si­ze that the spa­ti­al or­ga­niza­ti­on wit­hin a re­se­arch cam­pus or even wit­hin a buil­ding in­flu­en­ces in­ter­di­sci­pli­na­ry work. In a col­la­bo­ra­ti­on net­work study, we in­ves­ti­ga­te which di­stance mat­ters, how much re­se­ar­chers are in­flu­en­ced by peop­le working around them and how sci­en­ti­fic pu­bli­shing chan­ges de­pen­ding on the he­te­ro­gen­ei­ty among authors.
Out­co­mes of the study could pro­vi­de va­lu­a­ble in­for­ma­ti­on about which spa­ti­al or­ga­niza­ti­on can fos­ter (in­ter­di­sci­pli­na­ry) re­se­arch and could be used for fu­ture plans of buil­ding struc­tu­res.

Re­fe­ren­ces:

Big Data Be­au­ty – The aes­the­tic po­ten­ti­al of large num­bers and al­go­rithms

Main con­tacts: Turid Frahnow, Chris­tia­ne Fuchs, Jo­han­nes Voit

The di­gi­tal re­vo­lu­ti­on has brought us not only a mul­ti­tu­de of tech­ni­cal in­no­va­tions, but also a flood of data that ex­ceeds human ca­pa­ci­ty. The al­go­rithms used to ana­ly­ze this data are ubi­qui­tous, whe­ther in na­vi­ga­ti­on de­vices or in wea­ther fo­re­cas­ting. But al­go­rithms are by no means just abs­tract pro­ce­du­res, they often have a very prac­ti­cal me­a­ning for ever­y­day ac­tions. And bey­ond their prac­ti­cal use, they can even hold ar­tis­tic po­ten­ti­al.

As part of this pro­ject, we held an in­ter­di­sci­pli­na­ry se­mi­nar in which the aes­the­tic po­ten­ti­al of al­go­rithms and large num­bers was ex­plo­red. Out­co­mes were pre­sen­ted at the ju­bi­lee fes­ti­val in Sep­tem­ber 2019. We have also con­tri­bu­t­ed an ex­hi­bit piece to the uni­ver­si­ty's show­room a soun­ding of a sor­ting al­go­rithm using sounds from the uni­ver­si­ty buil­ding.

Some stu­dent pro­jects are pre­sen­ted here (in Ger­man).

Esti­ma­ti­on of Single-​cell He­te­ro­gen­ei­ties from Cell Po­pu­la­ti­ons

Mix­tu­re of cells in dif­fe­rent re­gu­la­to­ry sta­tes (left) and single-​cell mix­tu­re den­si­ty (right) (source: Chris­tia­ne Fuchs, HMGU).

Main con­tacts: Lisa Am­rhein, Mercé Garì, Chris­tia­ne Fuchs

Even when ap­pearing per­fect­ly ho­mo­ge­ne­ous on a mor­pho­lo­gi­cal basis, tis­su­es can be sub­stan­ti­al­ly he­te­ro­ge­ne­ous in single-​cell mole­cu­lar ex­pres­si­on. As such he­te­ro­gen­ei­ties might go­vern the re­gu­la­ti­on of cell fate, one is in­te­rested in quan­ti­fy­ing the he­te­ro­gen­ei­ties in a given tis­sue.

Gene ex­pres­si­on me­a­su­re­ments of sin­gle cells would be most sui­ta­ble to de­tect and fur­ther pa­ra­me­teri­ze a he­te­ro­ge­ne­ous po­pu­la­ti­on if the da­ta­set was large and error-​free. Un­for­tu­n­a­te­ly, such me­a­su­re­ments are often ex­pen­si­ve and sub­ject to sub­stan­ti­al tech­ni­cal noise. In­s­tead of con­side­ring single-​cell data, we ran­dom­ly select small num­bers of cells and me­a­su­re the sub­po­pu­la­ti­on aver­age ex­pres­si­on le­vels.

We in­ves­ti­ga­te how he­te­ro­gen­ei­ties can be de­tec­ted from such data by ap­p­li­ca­ti­on of sta­tis­ti­cal me­thods, and how the pro­por­ti­ons, mean va­lues and stan­dard de­via­ti­ons of the groups of dif­fer­ent­ly ex­pres­sed cells can be esti­ma­ted.

Ap­p­li­ca­ti­on to me­a­su­re­ments from human breast epi­the­li­al cells re­ve­als the func­tio­nal re­le­van­ce of the he­te­ro­ge­ne­ous ex­pres­si­on of a par­ti­cu­lar gene.

Source code, an R packa­ge and a web­tool are pro­vi­ded on the Sto­chastic­Pro­fi­ling pro­ject web­site.

Col­la­bo­ra­ti­on part­ner:
Prof. Dr. Kevin Janes, Uni­ver­si­ty of Vir­gi­nia

Re­fe­ren­ces

Sta­tis­ti­cal post­pro­ces­sing of en­sem­ble fo­re­casts for va­rious wea­ther quan­ti­ties

Pre­dic­ti­ve Den­si­ties for Tem­pe­ra­tu­re ob­tai­ned by dif­fe­rent Post­pro­ces­sing Me­thods (source: An­net­te Möl­ler, Uni Bie­le­feld)

Main con­tact from our group: An­net­te Möl­ler

Wea­ther pre­dic­tion today is con­duc­ted via so-​called nu­me­ri­cal wea­ther pre­dic­tion (NWP) mo­dels. They con­sist of a sys­tem of dif­fe­ren­ti­al equa­tions de­scribing the state of the at­mo­s­phe­re as ac­cu­ra­te as pos­si­ble, which are in­te­gra­ted in time to ob­tain pre­dic­tions of fu­ture at­mo­s­phe­ric sta­tes. Ty­pi­cal­ly, the NWP mo­dels are run mul­ti­ple times, each time with dif­fe­rent in­iti­al con­di­ti­ons and/or model for­mu­la­ti­ons to re­p­re­sent the un­cer­tain­ty in these quan­ti­ties. This re­sults in an en­sem­ble of fo­re­casts, as each model run yields a sin­gle de­ter­mi­nistic fo­re­cast.

How­e­ver, en­sem­ble fo­re­casts are often un­ca­li­bra­ted and re­qui­re so-​called sta­tis­ti­cal post­pro­ces­sing. Here, sta­tis­ti­cal mo­dels are ap­p­lied to the en­sem­ble fo­re­casts in con­junc­tion with ob­ser­va­tions to im­pro­ve the qua­li­ty of the fo­re­casts. Fur­ther­mo­re, many post­pro­ces­sing mo­dels ob­tain a pro­ba­bi­listic fo­re­cast, e.g. in terms of a full pre­dic­ti­ve pro­ba­bi­li­ty dis­tri­bu­ti­on. These pro­ba­bi­listic fo­re­casts allow to as­sess and quan­ti­fy fo­re­cast un­cer­tain­ty ex­pli­ci­tly.

Sever­al chal­len­ges arise when de­a­ling with wea­ther va­ria­bles such as wind speed or pre­ci­pi­ta­ti­on, which ex­hi­bit many zero ob­ser­va­tions and/or heavy tail be­ha­viour. The cur­rent re­se­arch ac­ti­vi­ties in­clu­de mmo­di­fi­ca­ti­on or ex­ten­si­on of exis­ting mo­dels for nor­mal dis­tri­bu­t­ed wea­ther va­ria­bles such as tem­pe­ra­tu­re to other wea­ther va­ria­bles, such as ske­wed dis­tri­bu­t­ed wind speed or pre­ci­pi­ta­ti­on which is often mo­del­led by a mix­tu­re dis­tri­bu­ti­on.

Ano­ther im­portant re­se­arch area is con­cer­ned with in­cor­po­ra­ting de­pen­den­ci­es in space and time or bet­ween dif­fe­rent va­ria­bles into the mo­dels. Cur­rent re­se­arch ac­ti­vi­ties in the area of post­pro­ces­sing are con­cer­ned with de­ve­lo­ping dif­fe­rent types of mul­ti­va­ria­te post­pro­ces­sing mo­dels.

Re­fe­ren­ces

Baran, S., Möl­ler, A. (2020): Va­rious Ap­proa­ches to Sta­tis­ti­cal Ca­li­bra­ti­on of En­sem­ble Wea­ther Fo­re­casts. ERCIM News Issue 121, 30-31.

Lerch, S., Baran, S., Möl­ler, A., Groß, J., Schefzik, R., Hemri, S., and Gra­ter, M. (2020): Simulation-​based com­pa­ri­son of mul­ti­va­ria­te en­sem­ble post­pro­ces­sing me­thods. Non­line­ar Pro­ces­ses in Geo­phy­sics, Vo­lu­me 27, 349–371, https://doi.org/10.5194/npg-​27-349-2020.

Möl­ler, A., Groß, J. (2020): Pro­ba­bi­listic tem­pe­ra­tu­re fo­re­cas­ting with a he­te­ro­s­ced­a­stic en­sem­ble post­pro­ces­sing model. Quar­ter­ly Jour­nal of the Royal Me­teo­ro­lo­gi­cal So­cie­ty, Vo­lu­me 146, Issue 726, 211 – 224.

 

Past Pro­jects

De­tec­ting Ge­ne­tic and En­vi­ron­men­tal Risks for Child­hood Asth­ma

ROC cur­ves for mo­dels ta­king into ac­count ge­ne­tics (left), en­vi­ron­ment (midd­le), or both (right) (source: Nor­bert Krau­ten­ba­cher, HMGU).

Main con­tacts: Nor­bert Krau­ten­ba­cher, Chris­tia­ne Fuchs

Child­hood asth­ma is a wi­des­pread di­sea­se. Many stu­dies re­ve­a­led that its onset is in­flu­en­ced by ge­ne­tic and en­vi­ron­men­tal fac­tors like cer­tain sin­gle nu­cleo­ti­de po­ly­mor­phism (SNP) va­ri­ants, fa­mi­ly his­to­ry or far­ming en­vi­ron­ment.

Our ob­jec­ti­ve is to de­ve­lop an asth­ma risk score es­pe­cial­ly for child­ren bet­ween one and three years with which one can as­sess a child’s per­so­nal risk to de­ve­lop the di­sea­se. The score should be based on few SNPs and the en­vi­ron­men­tal va­ria­bles. This shall allow a cost-​efficient tar­ge­ted tre­at­ment for ex­po­sed child­ren.

Sta­tis­ti­cal aspects of this pro­ject are re­gu­la­riza­ti­on and va­ria­ble selec­tion, gene-​environment in­ter­ac­tions, big data, in­clu­si­on of prior know­ledge, stra­ti­fi­ca­ti­on of the data, mis­sing va­lues, SNP im­pu­ta­ti­on and va­li­da­ti­on.

Col­la­bo­ra­ti­on part­ners:
Prof. Dr. Erika von Mu­ti­us, Dr. Mar­kus Ege, Prof. Dr. Bi­an­ca Schaub
Dr. von Hau­ner Child­ren‘s Hos­pi­tal

Re­fe­ren­ces

Risk Pre­dic­tion for Pro­sta­te Can­cer Pa­ti­ents

From left to right: Donna Pau­ler An­kerst, Nor­bert Krau­ten­ba­cher, Mi­cha­el Lai­mig­ho­fer, Chris­toph Kurz, Chris­tia­ne Fuchs, Hagen Scherb, Ivan Kond­o­fer­s­ky, Julia Söll­ner; not pic­tu­red: Phil­ip Dar­gatz (source: HMGU).

Main con­tacts at ICB: Ivan Kond­o­fer­s­ky, Nor­bert Krau­ten­ba­cher, Hagen Scherb, Chris­tia­ne Fuchs

The Pro­sta­te Can­cer DREAM Chal­len­ge at­temp­ted to im­pro­ve sur­vi­val pre­dic­tion of pro­sta­te can­cer pa­ti­ents. Par­ti­ci­pants were asked to build risk scores from a bulk of snaps­hot and lon­gi­tu­di­nal data ta­bles wit­hin four months.

As "A Ba­va­ri­an Dream" we par­ti­ci­pa­ted in this chal­len­ge and fi­nis­hed up among the win­ning teams in both Sub­chal­len­ges 1 and 2. Our work in­vol­ved data and re­sult ma­nage­ment, data clea­ning and prepro­ces­sing in close col­la­bo­ra­ti­on with a cli­ni­ci­an, and model buil­ding ran­ging from clas­si­cal Cox re­gres­si­on to ma­chi­ne lear­ning, en­sem­ble me­thods and model aver­aging. Final pre­dic­tions were eva­lua­ted on an in­de­pen­dent test set that had been with­held by the chal­len­ge or­ga­ni­zers.

Re­fe­ren­ces

More in­for­ma­ti­on:

Lear­ning Clas­si­fiers on Bia­sed Samp­les

Selec­tion pro­cess lea­ding to bia­sed sam­ple (source: Chris­tia­ne Fuchs, Eleni Tsal­ma, HMGU).

Main con­tacts: Nor­bert Krau­ten­ba­cher, Chris­tia­ne Fuchs

In many epi­de­mio­lo­gi­cal ap­p­li­ca­ti­ons, par­ti­cu­lar in­te­rest lies on the in­ves­ti­ga­ti­on of rare com­bi­na­ti­ons of an ex­po­sure and a tar­get va­ria­ble. Re­p­re­sen­ta­ti­ve samp­les from a po­pu­la­ti­on hence may not con­tain suf­fi­ci­ent­ly many cases for a re­li­a­ble ana­ly­sis. For that re­a­son, stra­ti­fied samp­les are taken from the po­pu­la­ti­on to en­rich the rare com­bi­na­ti­ons. Well-​known examp­les are case-​control stu­dies or two-​phase stu­dies. The en­rich­ment comes at the cost of bia­sed samp­les dis­tor­ting esti­ma­tes. We ad­dress is­su­es ari­sing in pre­dic­tion on such bia­sed samp­les, both for trai­ning and eva­lua­ti­on of a sta­tis­ti­cal model.

Re­fe­ren­ces

Com­pu­ta­tio­nal Mo­dels of Neo­plas­mic He­te­ro­gen­ei­ties and Li­neage Choice

Ob­jec­ti­ves of this pro­ject. Left: In­fer­ring tran­scrip­tio­nal and ge­no­mic he­te­ro­gen­ei­ty in AML, that is the co-​existence of at least two dis­tinct cell po­pu­la­ti­ons wit­hin a tumor, and how it evol­ves over time. Right: Esti­ma­ting dif­fe­ren­tia­ti­on and self-​renewal rates in healt­hy and clo­nal dif­fe­ren­tia­ti­on hier­ar­chies from healt­hy and MDS pa­ti­ent data (source: Chris­tia­ne Fuchs, Cars­ten Marr, HMGU).

Main con­tacts at Bio­sta­tis­tics: Lisa Am­rhein, Chris­tia­ne Fuchs

Acute mye­lo­id leu­kemia (AML) often re­sults from the mye­lo­dys­plastic syn­dro­me (MDS). Here, the dif­fe­ren­tia­ti­on hier­ar­chy from hema­to­poie­tic stem cells to ma­tu­re, func­tio­nal cells is dis­tur­bed. AML pa­ti­ents, again, fre­quent­ly carry a mix­tu­re of dif­fe­rent can­cer cell types, so-​called sub­clo­nes. This is re­flec­ted by a mix­tu­re of ge­no­mic si­gna­tu­res and he­te­ro­ge­ne­ous tran­scrip­to­me pro­files. Ap­p­ly­ing sta­tis­ti­cal and dy­na­mi­cal mo­dels to data from our cli­ni­cal and bio­lo­gi­cal col­la­bo­ra­tors, we want to iden­ti­fy al­te­red dif­fe­ren­tia­ti­on hier­ar­chies of MDS sub­clo­nes and cha­rac­te­ri­ze the de­ve­lo­p­ment of re­la­ted he­te­ro­gen­ei­ties in AML while the tumor un­der­goes evo­lu­ti­on.

This pro­ject is fun­ded as Sub­pro­ject A17 of the Col­la­bo­ra­ti­ve Re­se­arch Cent­re (CRC) 1243 "Ge­ne­tic and Epi­ge­ne­tic Evo­lu­ti­on of Hema­to­poie­tic Neo­plasms".

Fur­ther rea­ding:

Zum Seitenanfang
Investigating the impact of household structures on disease spread (source: Houda Yaqine, HMGU).
Sources of uncertainty (brown), methods for treating uncertainty (blue) and expertise required (grey) (source: Christiane Fuchs, HMGU).
Sample paths of jump process (left), ODE (middle) and SDE (right) (source: Christiane Fuchs, HMGU).
ROC curves for models taking into account genetics (left), environment (middle), or both (right) (source: Norbert Krautenbacher, HMGU).
Selection process leading to biased sample (source: Christiane Fuchs, Eleni Tsalma, HMGU).
Objectives of this project. Left: Inferring transcriptional and genomic heterogeneity in AML, that is the co-existence of at least two distinct cell populations within a tumor, and how it evolves over time. Right: Estimating differentiation and self-renewal rates in healthy and clonal differentiation hierarchies from healthy and MDS patient data (source: Christiane Fuchs, Carsten Marr, HMGU).

Datenschutzeinstellung

Diese Webseite verwendet Cookies und ähnliche Technologien. Einige davon sind essentiell, um die Funktionalität der Website zu gewährleisten, während andere uns helfen, die Website und Ihre Erfahrung zu verbessern. Falls Sie zustimmen, verwenden wir Cookies und Daten auch, um Ihre Interaktionen mit unserer Webseite zu messen. Sie können Ihre Einwilligung jederzeit unter Datenschutzerklärung einsehen und mit der Wirkung für die Zukunft widerrufen. Auf der Seite finden Sie auch zusätzliche Informationen zu den verwendeten Cookies und Technologien.