If you are interested in a position as postdoctoral researcher, doctoral student or student assistant, please contact us!
Dr. Tamara Schamberger
Postdoctoral Researcher
Email
tamara.schamberger@uni-bielefeld.de
Room
V9-134
Phone
+49 521 106-4877
Research Interests
Structural equation modeling
Emergent variables
Maximum likelihood estimation
Published Papers
Schuberth, F., Schamberger, T., Henseler, J. (2023). More powerful parameter tests? No, rather biased parameter estimates. Some reflections on path analysis with weighted composites. Behavior Research Methods. https://doi.org/10.3758/s13428-023-02256-5
Schuberth, F., Hubona, G., Roemer, E., Zaza, S., Schamberger, T., Chuah, F., Cepeda-Carrión, G., Henseler, J. (2023). The choice of structural equation modeling technique matters: A commentary on Dash and Paul (2021). Technological Forecasting and Social Change, 194, 122665
Schamberger, T. (2023). Conducting Monte Carlo Simulations for PLS-PM and other variance-based estimators for structural equation modeling. Industrial Management & Data Systems, 123(6), 1789-1813, https://doi.org/10.1108/IMDS-07-2022-0418
Schuberth, F., Schamberger, T., Rönkkö, M., Liu, Y., Henseler, J. (2023). Premature Conclusions about the Signal-to-Noise Ratio in Structural Equation Modeling Research: A Commentary on Yuan and Fang (2023). British Journal of Mathematical and Statistical Psychology, http://doi.org/10.1111/bmsp.12304
Schamberger, T. (2022) Methodological Advances in Composite-based Structural Equation Modeling. University of Würzburg/ University of Twente, https://doi.org/10.3990/1.9789036553759
Schamberger, T., Cantaluppi, G., Schuberth, F. (accepted). Revisiting and Extending PLS for Ordinal Measurement and Prediction In H. Latan, J. F. Hair, & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts, methodological issues, and applications (2nd ed.). Cham, Switzerland: Springer.
Schamberger, T., Schuberth, F., & Henseler, J. (2023). Confirmatory composite analysis in human development research. International Journal of Behavioral Development, 47(1), 89–100. https://doi.org/10.1177/01650254221117506
Schamberger, T., Schuberth, F., Henseler, J., Dijkstra T. K. (2020). Robust partial least squares path modeling. Behaviormetrika, https://doi.org/10.1007/s41237-019-00088-2